A First Course in Ordinary Differential Equations A First Course in Ordinary Differential Equations Suman Kumar Tumuluri First edition published 2021 by CRC Press 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742 and by CRC Press 2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN © 2021 Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, LLC Reasonable efforts have been made to publish reliable data and information, but the author and pub- lisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information stor- age or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact [email protected] Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging‑in‑Publication Data ISBN: [978-0-8153-5983-8] (hbk) ISBN: [978-1-003-15375-7] (ebk) Typeset in Computer Modern font by KnowledgeWorks Global Ltd. To my parents Seshu Kumari S. R. Sastry Tumuluri Contents Preface xi 1 Introduction 1 1.1 Ordinary differential equations . . . . . . . . . . . . . . . . . 1 1.2 Applications of ODEs . . . . . . . . . . . . . . . . . . . . . . 2 2 First order ODEs 7 2.1 A review of some basic methods . . . . . . . . . . . . . . . . 7 2.1.1 Separation of variables . . . . . . . . . . . . . . . . . . 7 2.1.2 Exact equations . . . . . . . . . . . . . . . . . . . . . 13 2.1.3 Linear ODEs . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Well-posedness . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.1 Continuable solutions . . . . . . . . . . . . . . . . . . 29 2.3 Differential inequalities . . . . . . . . . . . . . . . . . . . . . 32 2.3.1 Applications of Gronwall’s lemma . . . . . . . . . . . 34 2.4 Comparison results . . . . . . . . . . . . . . . . . . . . . . . 37 2.5 The first order scalar autonomous equations . . . . . . . . . 44 3 Higher order linear ODEs 59 3.1 ODEs with constant coefficients . . . . . . . . . . . . . . . . 59 3.1.1 Factorization of differential operators: homogeneous case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.1.2 Factorizationofdifferentialoperators:non-homogeneous case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.1.2.1 Method of partial fractions . . . . . . . . . . 67 3.1.2.2 Power series method . . . . . . . . . . . . . . 68 3.1.2.3 Method of undetermined coefficients . . . . . 70 3.1.2.4 Exponential shift rule . . . . . . . . . . . . . 73 3.1.3 Euler’s equation . . . . . . . . . . . . . . . . . . . . . 75 3.2 ODEs with variable coefficients . . . . . . . . . . . . . . . . . 77 3.2.1 Dimension of the solution space . . . . . . . . . . . . . 79 3.2.2 Wronskian and its properties . . . . . . . . . . . . . . 82 3.2.3 Lagrange’s method of reduction of the order . . . . . . 85 vii viii Contents 3.2.4 Zeros of the solutions to second order ODEs. . . . . . 88 3.3 Non-homogeneous ODEs with variable coefficients . . . . . . 93 3.3.1 Method of variation of parameters . . . . . . . . . . . 94 4 Boundary value problems 103 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.2 Adjoint forms . . . . . . . . . . . . . . . . . . . . . . . . . . 107 4.2.1 Boundary conditions . . . . . . . . . . . . . . . . . . . 109 4.3 Green’s function . . . . . . . . . . . . . . . . . . . . . . . . . 110 4.3.1 Non-homogeneous boundary conditions . . . . . . . . 118 4.4 Sturm-Liouville systems and eigenvalue problems . . . . . . 120 5 Systems of first order ODEs 135 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 5.2 Existence and uniqueness: Picard’s method revisited . . . . . 137 5.3 Systems of linear ODEs with constant coefficients . . . . . . 139 5.3.1 Exponential of a matrix and its properties . . . . . . . 139 5.3.1.1 Working rule to find eA . . . . . . . . . . . . 148 5.3.2 Solution to Y(cid:48) =AY . . . . . . . . . . . . . . . . . . . 149 5.4 Systems of linear ODEs with variable coefficients . . . . . . . 155 5.4.1 Solution matrix and fundamental matrix. . . . . . . . 159 5.4.2 Non-homogeneous ODEs: method of variation of parameters revisited . . . . . . . . . . . . . . . . . . . 161 6 Qualitative behavior of the solutions 169 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 6.2 Linear systems with constant coefficients . . . . . . . . . . . 174 6.3 Lyapunov energy function . . . . . . . . . . . . . . . . . . . . 189 6.4 Perturbed linear systems . . . . . . . . . . . . . . . . . . . . 197 6.5 Periodic solutions . . . . . . . . . . . . . . . . . . . . . . . . 207 7 Series solutions 223 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 7.2 Existence of analytic solutions . . . . . . . . . . . . . . . . . 224 7.3 The Legendre equation . . . . . . . . . . . . . . . . . . . . . 228 7.3.1 Applications of Rodrigue’s formula . . . . . . . . . . . 232 7.4 Linear ODEs with regular singular points . . . . . . . . . . . 235 7.5 Bessel’s equation . . . . . . . . . . . . . . . . . . . . . . . . . 243 7.6 Regular singular points at infinity . . . . . . . . . . . . . . . 247 Contents ix 8 The Laplace transforms 251 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 8.2 Definition and properties . . . . . . . . . . . . . . . . . . . . 251 8.2.1 The Heaviside function . . . . . . . . . . . . . . . . . 265 8.2.2 The convolution . . . . . . . . . . . . . . . . . . . . . 266 8.3 Inverse Laplace transforms . . . . . . . . . . . . . . . . . . . 269 8.4 Applications to ODEs . . . . . . . . . . . . . . . . . . . . . . 274 9 Numerical Methods 283 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 9.2 Euler methods . . . . . . . . . . . . . . . . . . . . . . . . . . 284 9.3 The Runge–Kutta Method . . . . . . . . . . . . . . . . . . . 297 Appendix A 307 A.1 Metric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 Appendix B 311 B.1 Another proof of the Cauchy–Lipschitz theorem . . . . . . . 311 Appendix C 315 C.1 Some useful results from calculus . . . . . . . . . . . . . . . . 315 Bibliography 317 Index 321