ebook img

A First Course in Group Theory PDF

300 Pages·2021·3.885 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A First Course in Group Theory

Bijan Davvaz A First Course in Group Theory A First Course in Group Theory Bijan Davvaz A First Course in Group Theory BijanDavvaz DepartmentofMathematics YazdUniversity Yazd,Iran ISBN978-981-16-6364-2 ISBN978-981-16-6365-9 (eBook) https://doi.org/10.1007/978-981-16-6365-9 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNature SingaporePteLtd.2021 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore Preface Theaimofthisbookistoprovideareadableaccountoftheexamplesandfundamental resultsofgroupsfromatheoreticalpointofviewandageometricalpointofview. The concept of a group is one of the most fundamental in modern mathematics. Groupsaresystemsconsistingofasetofelementsandabinaryoperationthatcan beappliedtotwoelementsoftheset,whichtogethersatisfycertainaxioms.These require that the group is closed under the operation (the combination of any two elements produces another element of the group), that it obey the associative law, thatitcontainsanidentityelement(which,combinedwithanyotherelement,leaves thelatterunchanged),andthateachelementhaveaninverse(whichcombineswith anelementtoproducetheidentityelement). Sincethebookdoesnotmakeanyassumptionsaboutthereader’sbackground,it issuitablefornewcomerstogrouptheoryandeventhosewhoneverstudiedalgebra. Toexplainmanysubjectsweusedfiguresandimagestohelpthereaders. Thebookisorganizedintoelevenchapters.Togettoanydepthingrouptheory requiressettheory,combinatorics,numbertheory,matrixtheory,andgeometry.Thus, not only we have devoted Chaps. 1–2 to the introductory concepts of set theory, combinations,numbertheory,andsymmetry,butwehavealsodevotedsomeparts ofChap.7tomatrixtheory.Althoughthemainsubjectofthebookisgroupsbutin manypartswewillneedsomeinformationaboutotheralgebraicstructures,likerings, fieldsandvectorspaces.InChap.3,wegivethedefinitionsofgroupandsubgroup, examplesandsomeelementaryproperties.Severalexcellentandimportantexamples of groups like cyclic groups, permutation groups, group of arithmetical functions, matrixgroupsandlineargroupsareinvestigatedinChaps.4–7.InChap.8,Lagrange’s theoremasthemostimportanttheoreminfinitegroupsisdiscussed.Chapters9–11 address the normal subgroups, factor groups, derived subgroup, homomorphism, isomorphismandautomorphism ofgroups.Aconsequence isCayley’s theorem in whicheverygroupcouldberealizedasapermutationgroup. Somechaptersorsectionsarelabelledasoptional;thismeansthatthereaderscan ignore them for the first study. Each section ends in a collection of exercises. The purposeoftheseexercisesistoallowstudentstotesttheirassimilationofthematerial, v vi Preface to challenge their knowledge and ability. Moreover, at the end of each chapter we havetwospecialsections:(1)Worked-OutProblems;(2)SupplementaryExercises. In each worked-out problems section, I decided to try teach by examples, by writingouttosolutionstoproblems.Inchoosingproblems,threemajorcriteriahave beenconsidered,tobechallenging,interestingandeducational.Moreover,thereare many exercises at the end of each chapter as supplementary exercises. They are harderthanbeforeandservetopresenttheinterestingconceptsandtheoremswhich arenotdiscussedinthetext. Thelistofreferencesattheendofthebookisconfinedtoworksactuallyusedin thetext. Yazd,Iran BijanDavvaz Contents 1 PreliminariesNotions .......................................... 1 1.1 SetsandEquivalenceRelations ............................. 1 1.2 Functions ............................................... 8 1.3 OrderedSets ............................................. 11 1.4 CombinatorialAnalysis ................................... 14 1.5 DivisibilityandPrimeNumbers ............................ 18 1.6 Worked-OutProblems .................................... 25 1.7 SupplementaryExercises .................................. 28 2 SymmetriesofShapes ......................................... 31 2.1 Symmetry ............................................... 31 2.2 Translations ............................................. 34 2.3 RotationSymmetries ..................................... 36 2.4 MirrorReflectionSymmetries .............................. 38 2.5 CongruenceTransformations ............................... 41 2.6 Worked-OutProblems .................................... 43 2.7 SupplementaryExercises .................................. 45 3 Groups ....................................................... 47 3.1 AShortHistoryofGroupTheory ........................... 47 3.2 BinaryOperations ........................................ 49 3.3 SemigroupsandMonoids(Optional) ........................ 53 3.4 GroupsandExamples ..................................... 59 3.5 TurningGroupsintoLatinSquares(Optional) ................ 72 3.6 Subgroups ............................................... 76 3.7 Worked-OutProblems .................................... 81 3.8 SupplementaryExercises .................................. 85 4 CyclicGroups ................................................ 87 4.1 GroupofIntegersModulon ............................... 87 4.2 CyclicGroups ........................................... 91 4.3 GeneratingSets .......................................... 99 vii viii Contents 4.4 Worked-OutProblems .................................... 101 4.5 SupplementaryExercises .................................. 102 5 PermutationGroups ........................................... 105 5.1 InverseFunctionsandPermutations ......................... 105 5.2 SymmetricGroups ....................................... 108 5.3 AlternatingGroups ....................................... 119 5.4 Worked-OutProblems .................................... 124 5.5 SupplementaryExercises .................................. 127 6 GroupofArithmeticalFunctions(Optional) ..................... 131 6.1 ArithmeticalFunctions .................................... 131 6.2 DirichletProductandItsProperties ......................... 136 6.3 MultiplicativeFunctions ................................... 139 6.4 Worked-OutProblems .................................... 143 6.5 SupplementaryExercises .................................. 147 7 MatrixGroups ................................................ 149 7.1 IntroductiontoMatrixGroups .............................. 149 7.2 MoreAboutVectorsinRn ................................. 166 7.3 RotationGroups ......................................... 170 7.4 ReflectionsinR2 andR3 .................................. 175 7.5 TranslationandScalingMatrices ........................... 180 7.6 DihedralGroups ......................................... 183 7.7 QuaternionGroup ........................................ 189 7.8 Worked-OutProblems .................................... 191 7.9 SupplementaryExercises .................................. 193 8 CosetsofSubgroupsandLagrange’sTheorem ................... 195 8.1 CosetsandTheirProperties ................................ 195 8.2 GeometricExamplesofCosets ............................. 198 8.3 Lagrange’sTheorem ...................................... 202 8.4 IndexofSubgroups ....................................... 207 8.5 ACountingPrincipleandDoubleCosets .................... 209 8.6 Worked-OutProblems .................................... 212 8.7 SupplementaryExercises .................................. 214 9 NormalSubgroupsandFactorGroups .......................... 217 9.1 NormalSubgroups ....................................... 217 9.2 FactorGroups ........................................... 222 9.3 Cauchy’sTheoremandClassEquation ...................... 225 9.4 Worked-OutProblems .................................... 229 9.5 SupplementaryExercises .................................. 231 Contents ix 10 SomeSpecialSubgroups ....................................... 233 10.1 CommutatorsandDerivedSubgroups ....................... 233 10.2 DerivedSubgroupsofSomeSpecialGroups ................. 237 10.3 MaximalSubgroups ...................................... 240 10.4 Worked-OutProblems .................................... 243 10.5 SupplementaryExercises .................................. 245 11 GroupHomomorphisms ....................................... 247 11.1 HomomorphismsandTheirProperties ....................... 247 11.2 IsomorphismTheorems ................................... 254 11.3 Cayley’sTheorem ........................................ 262 11.4 Automorphisms .......................................... 265 11.5 CharacteristicSubgroups .................................. 268 11.6 AnotherViewofLinearGroups ............................ 270 11.7 Worked-OutProblems .................................... 273 11.8 SupplementaryExercises .................................. 279 References ........................................................ 283 Index ............................................................. 287 About the Author BijanDavvazisProfessorattheDepartmentofMathematics,YazdUniversity,Iran. Earlier, he served as the Head of the Department of Mathematics (1998–2002), ChairmanoftheFacultyofScience(2004–2006),andVice-PresidentforResearch (2006–2008) at Yazd University, Iran. He earned his Ph.D. in Mathematics with a thesison“TopicsinAlgebraicHyperstructures”fromTarbiatModarresUniversity, Iran,andcompletedhisM.Sc.inMathematicsfromtheUniversityofTehran,Iran. Hisareasofinterestincludealgebra,algebraichyperstructures,roughsetsandfuzzy logic.Ontheeditorialboardsfor25mathematicaljournals,Prof.Davvazhasauthored 6booksandover600researchpapers,especiallyonalgebra,fuzzylogic,algebraic hyperstructuresandtheirapplications. xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.