ebook img

A Discontinuous Coarse Spaces (DCS) Algorithm for Cell Centered Finite Volumes based Domain Decomposition Methods: the DCS-RJMin algorithm PDF

0.27 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Discontinuous Coarse Spaces (DCS) Algorithm for Cell Centered Finite Volumes based Domain Decomposition Methods: the DCS-RJMin algorithm

A Discontinuous Coarse Spaces (DCS) Algorithm for Cell Centered Finite Volumes 4 based Domain Decomposition Methods: the 1 0 DCS-RJMin algorithm 2 n a Ke´vinSantugini∗ J 4 January15,2014 1 ] A N Abstract h. Inthispaper,weintroduceanewcoarsespacealgorithm,the“Discontinuous t CoarseSpaceRobin JumpMinimizer”(DCS-RJMin), tobeused inconjunction a withone-leveldomaindecompositionmethods(DDM).Thisnewalgorithmmakes m useofDiscontinuousCoarseSpaces(DCS),andisdesignedforDDMthatnaturally [ producediscontinuousiteratessuchasOptimizedSchwarzMethods(OSM).This algorithmissuitablebothatthecontinuouslevelandforcell-centeredfinitevolume 1 discretizations. Atthecontinuouslevel,weprove,undersomeconditionsonthe v 3 parametersofthealgorithm,thatthedifferencebetweentwoconsecutiveiterates 1 goesto0.Wealsoprovidenumericalresultsillustratingtheconvergencebehavior 1 oftheDCS-RJMinalgorithm. 3 Keywords:discontinuouscoarsespace,optimizedSchwarzmethod. . 1 0 1 Introduction 4 1 : Due to the ever increasing parallelism in modern computers, and the ever increasing v affordability of massively parallel calculators, it is of utmost importance to develop i X algorithmsthatarenotonlyparallelbutscalable.Inthispaper,weareinterestedinDo- r mainDecompositionMethods(DDM)whichareonewaytoparallelizethenumerical a resolutionofPartialDifferentialEquations(PDE). In Domain Decomposition Methods, the whole domain is subdivided in several subdomainsandacomputationunitisassignedtoeachsubdomain. Inthispaper, we onlyconsidernon-overlappingdomaindecompositions.Thenumericalsolutionisthen computedinparallelinsideeachsubdomainwithartificialboundaryconditions. Then, subdomainsexchangeinformationbetweeneachother. Thisprocessisreapplieduntil convergence. Inpractice,suchascheme,callediterativeDDM,shouldbeaccelerated ∗Universite´ Bordeaux, IMB, CNRS UMR5251, MC2, INRIA Bordeaux - Sud-Ouest Kevin.Santuginimath.u-bordeaux1.fr 1 usingKrylovmethods. However,forthepurposeofanalyzinganalgorithm,itcanbe interestingtoworkdirectlywiththeiterativealgorithmitselfasKrylovaccelerationis soefficientitcanhideawaysmalldesignproblemsinthealgorithm. Inone-levelDDM,onlyneighboringsubdomainsexchangeinformation.Mostclas- sicalDDMareone-level. Whileone-levelDDMcanbeveryefficientandconvergein a few iterations, they are not scalable: convergence can never occur before informa- tionhaspropagatedbetweenthetwofurthestapartsubdomains. I.E.,aonelevelDDM must iterate at least as many times as the diameter of the connectivity graph of the domain decomposition. Typically, if N is the number of subdomains, this means at √ leastO(N)iterationsforone-dimensionalproblems,O( N)fortwo-dimensionalones √ andO(3N)forthree-dimensionalones. ForDDMtobescalable,somekindofglobal informationexchangeisneeded. Thetraditionalapproachtoachievesuchglobalinfor- mationexchangeisaddingacoarsespacetoapre-existingone-levelDDM. To the author knowledge, the first use of coarse spaces in Domain Decomposi- tionMethodscanbefoundin[16]. Becausecoarsespacesenableglobalinformation exchange, scalability becomes possible. Well known methods with coarse spaces are the two-level Additive Schwarz method [3], the FETI method [13], and the balanc- ingNeumann-Neumannmethods[12,4,14]. Coarsespacesarealsoanactiveareaof research, see [2, 15] for high contrast problems. It is not trivial to add an effective coarsespacetoone-levelDDMthatproducediscontinuousiteratessuchasOptimized SchwarzMethods,see[6,7],and[5,chap.5]. In[9],theauthorsintroducedtheideaofusingdiscontinuouscoarsespaces. Since manyDDMalgorithmsproducediscontinuousiterates,theuseofdiscontinuouscoarse corrections is needed to correct the discontinuities between subdomains. In that pro- ceeding,onepossiblealgorithm,theDCS-DMNV(DiscontinuousCoarseSpaceDirich- letMinimizerNeumannVariational),wasdescribedatthecontinuouslevelandatthe discrete level for Finite Element Methods on a non-overlapping Domain Decompo- sition. In [17], a similar method, the DCS-DGLC algorithm was proposed. Both theDCS-DMNVandtheDCS-DGLCarewellsuitedtofiniteelementdiscretizations. Also, a similar approach was proposed in [8] for Restricted Additive Schwarz(RAS), anoverlappingDDM, ItwasprovenrecentlythattheproofofconvergenceforSchwarzfoundin[11,1] canbeextendedtotheDiscreteOptimizedSchwarzalgorithmwithcellcenteredfinite volumemethods,see[10]. Itwouldbeinterestingtohaveadiscontinuouscorsespace algorithmthatissuitedtocellcenteredfinitevolumes.Unfortunately,neithertheDCS- DMNV algorithm nor the DCS-DGLC algorithm are practical for cell centered-finite volumemethods: thestiffnessmatrixnecessarytocomputethecoarsecorrectionisn’t assparseasonewouldintuitivelybelieve. Inthispaper, ourmaingoalistodescribe one family of algorithms making use of discontinuous coarse spaces but suitable for cellcenteredfinitevolumesdiscretizations. In §2, we briefly recall the motivations behind the use of discontinuous coarse space. In§3,wepresenttheDCS-RJMinalgorithm. In§4,weprovethatundersome conditionsonthealgorithmparameter,theL2-normofthedifferencebetweentwocon- secutiveiteratesgoestozero. Finally,wepresentnumericalresultsin§5. 2 2 OptimizedSchwarzandDiscontinuousCoarseSpaces Let’sconsiderapolygonaldomainΩinR2. Asasimpletestcase,wewishtosolve ηu−(cid:52)u= f inΩ, u=0on∂Ω. Withoutacoarsespace,theOptimizedSchwarzMethodisdefinedas Algorithm2.1(CoarselessOSM). 1. Set u0 to either the null function or to the i coarsesolution. 2. Untilconvergence (a) Setun+1astheuniquesolutionto i ηun+1−(cid:52)un+1= f inΩ, i i i ∂un+1 ∂un i +pun+1= j +punon∂Ω ∩∂Ω , ∂nnn i ∂nnn j i j i i un+1=0on∂Ω ∩∂Ω. i In practical applications, such an algorithm should be accelerated using Krylov methods. However,studyingtheiterative(Richardson)versioncangivemathematical insightontheconvergencespeedoftheKrylovacceleratedalgorithm. ThemainshortcomingofthecoarselessOptimizedSchwarzmethodsistheabsence ofdirectcommunicationbetweendistantsubdomains. Togetascalablealgorithm,one canuseacoarsespace. AgeneralversionofacoarsespacemethodfortheOSMis Algorithm2.2(GenericOSMwithcoarsespace). 1. Setu0toeitherthenullfunc- i tionortothecoarsesolution. 2. Untilconvergence (a) Setun+1astheuniquesolutionto i ηun+1/2−(cid:52)un+1= f inΩ, i i i ∂un+1/2 ∂un i +pun+1/2= j +punon∂Ω ∩∂Ω , ∂nnn i ∂nnn j i j i i un+1/2=0on∂Ω ∩∂Ω. i (b) Compute in some way a coarse corrector Un+1 belonging to the coarse spaceX,thenset un+1=un+1/2+Un+1. MoreimportantthanthealgorithmusedtocomputethecoarsecorrectionUn+1 is thechoiceofanadequatecoarsespaceitself. Theideaspresentedin[9]stillapply. In particular,thecoarsespaceshouldcontaindiscontinuousfunctionsandthediscontinu- ities of the coarse corrector should be located at the interfaces between subdomains. 3 Forthesereasons,wesupposethewholedomainΩismeshedbyeitheracoarsetrian- gularmeshoracartesianmeshT andweuseeachcoarsecellofT asasubdomain H H Ω of Ω. The optimal theoretical coarse space A is the set of all functions that are i solutions to the homogenous equation inside each subdomain: for linear problems, the errors made by any iterate are guaranteed to belong to that space. With an ade- quatealgorithmtocomputeUn+1,thecoarsespaceA givesaconvergenceinasingle coarseiteration. Unfortunatelythiscompletecoarsespaceisonlypracticalforonedi- mensional problems as it is of infinite dimension in higher dimensions. One should thereforechooseafinitedimensionalsubsetX ofA. d ThechoiceofthecoarsespaceX isprimordial. Itshouldhaveadimensionthatis d asmallmultipleofthenumberofsubdomains. TochooseX ,oneonlyneedtochoose d boundary conditions on every subdomain, then fill the interior of each subdomain by solvingthehomogenousequationineachsubdomain. Inthispaper,wehavenottried tooptimizeX andforthesakeofsimplicityhavechosenX asthesetofallfunctions d d in A with linear Dirichlet boundary conditions on each interface between any two adjacentsubdomains. 3 The DCS-RJMin Algorithm WenowdescribetheDCS-RobinJumpMinimizeralgorithm: Algorithm3.1(DCS-RJMin). Set p>0andq>0andX afinitedimensionalsubspaceofA. d Setu0toeither0ortothecoarsespacesolution. UntilConvergence 1. Setun+21 astheuniquesolutionto ηun+21 −(cid:52)un+12 = f inΩi, ∂uni+12 +pun+12 = ∂unj +punon∂Ω ∩∂Ω , ∂ννν i ∂ννν j i j ij ij u =0on∂Ω ∩∂Ω . i i j 2. SetUn+1inX astheuniquecoarsefunctionthatminimizes d ∑N ∑ (cid:13)(cid:13)(cid:13)∂(uin+12 +Uin+1)+q(un+21 +Un+1) i=1j∈N(i)(cid:13) ∂νννi i i −∂(unj+21 +Ujn+1)−q(un+21 +Un+1)(cid:13)(cid:13)(cid:13)2 , ∂νννi j j (cid:13)L2(∂Ωi∩∂Ωj) whereννν istheoutwardnormaltosubdomainΩ andN (i)thesetofall jsuch i i thatΩ andΩ areadjacent. j i 3. Setun+1:=un+1/2+Un+1. 4 4 Partial “Convergence” results for DCS-RJMin Wedon’thaveacompleteconvergencetheoremfortheDCS-RJMinalgorithm. How- ever, we can prove the iterates of the DCS-RJMin algorithm are close to converging when p=q: Proposition 4.1. If q = p. Then, the iterates produced by the DCS-RJMin algo- rithm3.1satisfylim (cid:107)un+1/2−un(cid:107) =0. n→+∞ i i L2 Proof. Let u be the mono-domain solution, set en =un−u, then, following Lions i i i energyestimates[11], (cid:90) (cid:90) η |en+1/2−en|2Dxxx+ |∇(en+1/2−en)|2Dxxx i i i i Ωi Ωi (cid:90) ∂(en+1/2−en) = i i ·(en+1/2−en) ∂Ωi ∂ννν i i 1 (cid:32)(cid:90) ∂(en+1/2−en) ∂(en+1/2−en) (cid:33) = | i i +p(en+1/2−en)|2−| i i −p(en+1/2−en)|2 4p ∂Ωi ∂ννν i i ∂ννν i i 1 (cid:32)(cid:90) ∂(en+1/2−en) (cid:90) ∂(en+1/2−en) (cid:33) = | i i +p(en+1/2−en)|2− | i i −p(en+1/2−en)|2 4p ∂Ωi ∂ννν i i ∂Ωi ∂ννν i i 1 (cid:18) (cid:90) (cid:12)(cid:12)(cid:18)∂en (cid:19) (cid:32)∂en) (cid:33)(cid:12)(cid:12)2 = ∑ (cid:12) j +pen − i +pen (cid:12) 4p j ∂Ωi∩∂Ωj(cid:12)(cid:12) ∂νννi j ∂νννi i (cid:12)(cid:12) −∑(cid:90) (cid:12)(cid:12)(cid:12)(cid:12)(cid:32)∂eni+1/2 −pen+1/2(cid:33)−∂enj+1/2) −pen+1/2(cid:12)(cid:12)(cid:12)(cid:12)2(cid:19) j ∂Ωi∩∂Ωj(cid:12)(cid:12) ∂νννi i ∂νννi j (cid:12)(cid:12) WesumtheaboveequalityoverallsubdomainsΩ andget i (cid:90) (cid:90) η∑ |en+1/2−en|2Dxxx+ |∇(en+1/2−en)|2Dxxx= i i i i i Ωi Ωi =(∑i,j)41p(cid:90)Γij(cid:12)(cid:12)(cid:12)(cid:12)(cid:20)∂∂νeννni +pen(cid:21)(cid:12)(cid:12)(cid:12)(cid:12)2−(cid:90)Γij(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:34)∂e∂n+ννν1i/2 +pen+1/2(cid:35)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)2, where [·] represents a jump across the interface. Since the coarse step of the DCS- RJMinalgorithmminimizestheRobinJumps,wehave (cid:90) (cid:90) η∑ |en+1/2−en|2Dxxx+ |∇(en+1/2−en)|2Dxxx≤ i i i i i Ωi Ωi ≤ ∑ 1 (cid:32)(cid:90) (cid:12)(cid:12)(cid:12)(cid:20)∂en +pen(cid:21)(cid:12)(cid:12)(cid:12)2−(cid:90) (cid:12)(cid:12)(cid:12)(cid:20)∂en+1 +pen+1(cid:21)(cid:12)(cid:12)(cid:12)2(cid:33). (i,j)4p Γij(cid:12) ∂νννi (cid:12) Γij(cid:12) ∂νννi (cid:12) Summingovern≥0yieldsthestatedresult. 5 5 Numerical Results Figure 1: Convergence for OSM and DCS-RJmin with Ω=[0,4]2, f(x,y)=0 and randominitialboundaryconditions. Plottinglog((cid:107)e (cid:107) /(cid:107)e (cid:107) ). 50 ∞ 0 ∞ We have implemented the DCS-RJMin algorithm in C++ for cell-centered finite volumes on a cartesian grid. We chose Ω=]0,4[×]0,4[, η =0 and iterated directly ontheerrorsbychoosing f =0. WeinitializedtheRobinboundaryconditionsatthe interfaces between subdomains at random and performed multiple runs of the DCS- RJMinalgorithmforvariousvaluesof p,qandofthenumberofsubdomains. Wehad pvaryfrom1.0to20.0with0.5incrementsandqtakesthefollowingvaluespm×10pe with p in {1.0,2.0,4.0,8.0} and p in {0,1}. We consider 2×2, 4×4, 6×6 and m e 8×8 subdomains. There are always 20×20 cells per subdomains. In Figure 1, we plotlog((cid:107)e (cid:107) /(cid:107)e (cid:107) )asafunctionof pforvariousvaluesofq. First,wenoticethat 50 ∞ 0 ∞ for each value of q, the convergence deteriorates above a certain p . In fact, for low q values of q and high values of p, the iterates diverge. For two different values of q, the curves are very close when p is smaller than both p . We also notice than even q thoughwecouldonlyproveProposition4.1forthecase p=q,weobservenumerical convergence even when p(cid:54)=q. In fact p=q is not the numerical optimum. This is to be expected at the intuitive level: for a theoretical proof of convergence, we want the algorithm to keep lowering some functional. The existence of such a functional is likely only if all the substeps of the algorithm are optimized for the same kind of errors. If p=q,boththecoarsesteporthelocalstepwilleitherremovelowfrequency errors (small p and q) or high frequency ones (high p and q). An efficient numerical algorithmshouldhavesubstepsoptimizedforcompletelydifferentkindoferrors. This iswhyefficientnumericalalgorithmsareusuallytheonesforwhichtheconvergence proofsarethemoredifficult. 6 6 Conclusion In this paper, we have introduced a new discontinuous coarse space algorithm, the DCS-RJMin,thatissuitableforcell-centeredfinitevolumediscretizations. Thecoarse space greatly improve numerical convergence. It would be of great interest to study which is the optimal low-dimensional subspace of all piecewise discontinuous piece- wise harmonic functions. Future work also includes the development of a possible alternative to coarse space in order to get scalability: “Piecewise Krylov Methods” where the same minimization problem than the one used in DCS-RJMin is used but where the coarse space are made of piecewise, per subdomain, differences between consecutiveone-leveliterates. References [1] Bruno Despre´s. Domain decomposition method and the helmholtz problem. In Gary C. Cohen, Laurence Halpern, and Patrick Joly, editors, Mathematical and numerical aspects of wave propagation phenomena, volume 50 of Proceedings inAppliedMathematicsSeries,pages44–52.SocietyforIndustrialandApplied Mathematics,1991. [2] VictoriaDolean,Fre´de´ricNataf,RobertScheichl,andNicoleSpillane. Analysis of a two-level schwarz method with coarse spaces based on local dirichlet to neumann maps. Computational Methods in Applied Mathematics, 12(4):391– 414,2012. [3] Maksymilian Dryja and Olof B. Widlund. An additive variant of the Schwarz alternatingmethodforthecaseofmanysubregions. TechnicalReport339,also Ultracomputer Note 131, Department of Computer Science, Courant Institute, 1987. [4] Maksymilian Dryja and Olof B. Widlund. Schwarz methods of Neumann- Neumann type for three-dimensional elliptic finite element problems. Comm. PureAppl.Math.,48(2):121–155,February1995. [5] OlivierDubois. OptimizedSchwarzMethodsfortheAdvection-DiffusionEqua- tionandforProblemswithDiscontinuousCoefficients. PhDthesis,McGillUni- versity,2007. [6] Olivier Dubois and Martin J. Gander. Convergence behavior of a two-level op- timizedSchwarzpreconditioner. InDomainDecompositionMethodsinScience andEngineeringXXI.SpringerLNCSE,2009. [7] Olivier Dubois, Martin J. Gander, Sebastien Loisel, Amik St-Cyr, and Daniel Szyld. TheoptimizedSchwarzmethodwithacoarsegridcorrection. SIAMJ.on Sci.Comp.,34(1):A421–A458,2012. 7 [8] MartinJ.Gander,LaurenceHalpern,andKe´vinSantugini.Anewcoarsegridcor- rectionforRAS. InDomainDecompositionMethodsinScienceandEngineering XXI.SpringerLNCSE,2013. [9] MartinJ.Gander,LaurenceHalpern,andKe´vinSantugini-Repiquet. Discontin- uous coarse spaces for dd-methods with discontinuous iterates. In Domain De- compositionMethodsinScienceandEngineeringXXI.SpringerLNCSE,2013. [10] MartinJ.Gander,FelixKwok,andKe´vinSantugini. OptimizedSchwarzatcross points: Finitevolumecase. Inpreparation,2013. [11] Pierre-LouisLions.OntheSchwarzalternatingmethod.III:avariantfornonover- lappingsubdomains. InTonyF.Chan, RolandGlowinski, JacquesPe´riaux, and Olof Widlund, editors, Third International Symposium on Domain Decomposi- tionMethodsforPartialDifferentialEquations, heldinHouston, Texas, March 20-22,1989,pages202–223,Philadelphia,PA,1990.SIAM. [12] Jan Mandel. Balancing domain decomposition. Communications in Numerical MethodsinEngineering,9(3):233–241,mar1993. [13] JanMandelandMarianBrezina. Balancingdomaindecompositionforproblems withlargejumpsincoefficients. Math.Comp.,65:1387–1401,1996. [14] Jan Mandel and Radek Tezaur. Convergence of a Substructuring Method with LagrangeMultipliers. Numer.Math.,73:473–487,1996. [15] Fre´de´ric Nataf, Hua Xiang, Victorita Dolean, and Nicole Spillane. A coarse sparse construction based on local Dirichlet-to-Neumann maps. SIAM J. Sci. Comput.,33(4):1623–1642,2011. [16] Roy A. Nicolaides. Deflation conjugate gradients with application to boundary valueproblems. SIAMJ.Num.An,,24(2):355–365,1987. [17] Ke´vin Santugini. A discontinuous galerkin like coarse space correction for do- main decomposition methods with continuous local spaces: the dcs-dglc algo- rithm. 2014. Inrevision. 8

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.