ebook img

A Course on Tug-of-War Games with Random Noise: Introduction and Basic Constructions PDF

258 Pages·2020·4.499 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Course on Tug-of-War Games with Random Noise: Introduction and Basic Constructions

Universitext Marta Lewicka A Course on Tug-of-War Games with Random Noise Introduction and Basic Constructions Universitext Universitext SeriesEditors SheldonAxler SanFranciscoStateUniversity CarlesCasacuberta UniversitatdeBarcelona JohnGreenlees UniversityofWarwick AngusMacIntyre QueenMaryUniversityofLondon KennethRibet UniversityofCalifornia,Berkeley ClaudeSabbah ÉcolePolytechnique,CNRS,UniversitéParis-Saclay,Palaiseau EndreSüli UniversityofOxford WojborA.Woyczyn´ski CaseWesternReserveUniversity Universitext is a series of textbooks that presents material from a wide variety of mathematicaldisciplinesatmaster’slevelandbeyond.Thebooks,oftenwellclass- testedbytheirauthor,mayhaveaninformal,personalevenexperimentalapproach to their subject matter. Some of the most successful and established books in the series have evolved through several editions, always following the evolution of teachingcurricula,intoverypolishedtexts. Thus as research topics trickle down into graduate-level teaching, first textbooks writtenfornew,cutting-edgecoursesmaymaketheirwayintoUniversitext. Moreinformationaboutthisseriesathttp://www.springer.com/series/223 Marta Lewicka A Course on Tug-of-War Games with Random Noise Introduction and Basic Constructions MartaLewicka DepartmentofMathematics UniversityofPittsburgh Pittsburgh,PA,USA ISSN0172-5939 ISSN2191-6675 (electronic) Universitext ISBN978-3-030-46208-6 ISBN978-3-030-46209-3 (eBook) https://doi.org/10.1007/978-3-030-46209-3 MathematicsSubjectClassification(2020):91A15,91A24,31C45,35B30,35G30,35J70 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicencetoSpringerNatureSwitzerland AG2020 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG. Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface The goal of these Course Notes is to present a systematic overview of the basic constructions and results pertaining to the recently emerged field of Tug-of- War games, as seen from an analyst’s perspective. To a large extent, this book represents the author’s own study itinerary, aiming at precision and completeness ofaclassroomtextinanupperundergraduate-tograduate-levelcourse. This book was originally planned as a joint project between Marta Lewicka (University of Pittsburgh) and Yuval Peres (then Microsoft Research). Due to an unforeseenturnofevents,neitherthecollaborationnortheexecutionoftheproject intheirpriorlyconceivedformscouldhavebeenpursued. The author wishes to dedicate this book to all women in mathematics, with admiration and encouragement. The publishing profit will be donated to the AssociationforWomeninMathematics. Pittsburgh,PA,USA MartaLewicka October2019 v Contents 1 Introduction .................................................................. 1 2 TheLinearCase:RandomWalkandHarmonicFunctions............. 9 2.1 TheLaplaceEquationandHarmonicFunctions...................... 10 2.2 TheBallWalk .......................................................... 11 2.3 TheBallWalkandHarmonicFunctions .............................. 17 2.4 ConvergenceattheBoundaryandWalk-Regularity.................. 19 2.5 ASufficientConditionforWalk-Regularity .......................... 23 2.6* TheBallWalkValuesandPerronSolutions .......................... 27 2.7* TheBallWalkandBrownianTrajectories ............................ 29 2.8 BibliographicalNotes.................................................. 34 3 Tug-of-WarwithNoise:Casep ∈[2,∞).................................. 37 3.1 Thep-HarmonicFunctionsandthep-Laplacian..................... 38 3.2 TheAveragingPrinciples .............................................. 40 3.3 TheFirstAveragingPrinciple.......................................... 47 3.4 Tug-of-WarwithNoise:ABasicConstruction ....................... 51 3.5 TheFirstAveragingastheDynamicProgrammingPrinciple........ 57 3.6* Casep =2andBrownianTrajectories ............................... 60 3.7* EquivalenceofRegularityConditions................................. 65 3.8 BibliographicalNotes.................................................. 68 4 BoundaryAwareTug-of-WarwithNoise:Casep ∈(2,∞)............. 71 4.1 TheSecondAveragingPrinciple....................................... 72 4.2 TheBasicConvergenceTheorem...................................... 77 4.3 PlayingBoundaryAwareTug-of-WarwithNoise.................... 82 4.4 AProbabilisticProofoftheBasicConvergenceTheorem ........... 88 4.5* TheBoundaryAwareProcessatp =2andBrownian Trajectories ............................................................. 93 4.6 BibliographicalNotes.................................................. 99 vii viii Contents 5 Game-RegularityandConvergence:Casep ∈(2,∞)................... 101 5.1 Convergencetop-HarmonicFunctions............................... 102 5.2 Game-RegularityandConvergence.................................... 109 5.3 ConcatenatingStrategies............................................... 113 5.4 TheAnnulusWalkEstimate ........................................... 117 5.5 SufficientConditionsforGame-Regularity:Exterior ConeProperty .......................................................... 120 5.6 SufficientConditionsforGame-Regularity:p >N.................. 122 5.7 BibliographicalNotes.................................................. 134 6 MixedTug-of-WarwithNoise:Casep ∈(1,∞) ......................... 135 6.1 TheThirdAveragingPrinciple......................................... 136 6.2 The Dynamic Programming Principle and the Basic ConvergenceTheorem ................................................. 142 6.3 MixedTug-of-WarwithNoise......................................... 146 6.4 Sufficient Conditions for Game-Regularity: Exterior CorkscrewCondition................................................... 152 6.5 Sufficient Conditions for Game-Regularity: Simply ConnectednessinDimensionN =2.................................. 156 6.6 BibliographicalNotes.................................................. 161 A BackgroundinProbability.................................................. 163 A.1 ProbabilityandMeasurableSpaces.................................... 163 A.2 RandomVariablesandExpectation.................................... 165 A.3 ProductMeasures....................................................... 168 A.4 ConditionalExpectation................................................ 172 A.5 Independence........................................................... 174 A.6 MartingalesandStoppingTimes ...................................... 176 A.7 ConvergenceofMartingales ........................................... 180 B BackgroundinBrownianMotion.......................................... 185 B.1 DefinitionandConstructionofBrownianMotion .................... 185 B.2 TheWienerMeasureandUniquenessofBrownianMotion.......... 192 B.3 TheMarkovProperties................................................. 194 B.4 BrownianMotionandHarmonicExtensions ......................... 199 C BackgroundinPDEs ........................................................ 203 C.1 LebesgueLp SpacesandSobolevW1,p Spaces...................... 203 C.2 SemicontinuousFunctions............................................. 209 C.3 HarmonicFunctions.................................................... 210 C.4 Thep-LaplacianandItsVariationalFormulation..................... 214 C.5 WeakSolutionstothep-Laplacian.................................... 217 Contents ix C.6 PotentialTheoryandp-HarmonicFunctions ......................... 221 C.7 BoundaryContinuityofWeakSolutionsto(cid:2) u=0................ 224 p C.8 ViscositySolutionsto(cid:2) u=0....................................... 229 p D SolutionstoSelectedExercises ............................................. 231 References......................................................................... 249 Index............................................................................... 253 Chapter 1 Introduction The goal of these Course Notes is to present a systematic overview of the basic constructions pertaining to the recently emerged field of Tug-of-War games with randomnoise,asseenfromananalyst’sperspective. TheLinearMotivation Theprototypicalellipticequation,arisingubiquitouslyin Analysis,FunctionTheoryandMathematicalPhysics,istheLaplaceequation: (cid:2) (cid:3) . (cid:2)u=div ∇u =0. Laplace’s equation is linear and its solutions u : D → R, defined on a domain D ⊂ RN,arecalledharmonicfunctions.Theyarepreciselythecriticalpoints(i.e., solutionstotheEuler–Lagrangeequation)ofthequadraticpotentialenergy: ˆ . I (u)= |∇u(x)|2dx. 2 D TheideabehindtheclassicalinterplayofthelinearPotentialTheoryandProbability isthatharmonicfunctionsandrandomwalksshareacommonaveragingproperty. Wenowbrieflyrecallthisrelation. Indeed,ontheonehand,foranyu∈C2(RN)thereholdstheexpansion: (cid:3)2 u(y)dy =u(x)+ (cid:2)u(x)+o((cid:3)2) as (cid:3) →0+. 2(N +2) B(cid:3)(x) ffl ´ . Recall that u = 1 u denotes the average of u on a set B. The displayed B |B| B formulafollowsbywritingthequadraticTaylorexpansionofuatx: ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusive 1 licencetoSpringerNatureSwitzerlandAG2020 M.Lewicka,ACourseonTug-of-WarGameswithRandomNoise,Universitext, https://doi.org/10.1007/978-3-030-46209-3_1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.