Table Of ContentUniversitext
Marta Lewicka
A Course on
Tug-of-War
Games with
Random Noise
Introduction and Basic Constructions
Universitext
Universitext
SeriesEditors
SheldonAxler
SanFranciscoStateUniversity
CarlesCasacuberta
UniversitatdeBarcelona
JohnGreenlees
UniversityofWarwick
AngusMacIntyre
QueenMaryUniversityofLondon
KennethRibet
UniversityofCalifornia,Berkeley
ClaudeSabbah
ÉcolePolytechnique,CNRS,UniversitéParis-Saclay,Palaiseau
EndreSüli
UniversityofOxford
WojborA.Woyczyn´ski
CaseWesternReserveUniversity
Universitext is a series of textbooks that presents material from a wide variety of
mathematicaldisciplinesatmaster’slevelandbeyond.Thebooks,oftenwellclass-
testedbytheirauthor,mayhaveaninformal,personalevenexperimentalapproach
to their subject matter. Some of the most successful and established books in the
series have evolved through several editions, always following the evolution of
teachingcurricula,intoverypolishedtexts.
Thus as research topics trickle down into graduate-level teaching, first textbooks
writtenfornew,cutting-edgecoursesmaymaketheirwayintoUniversitext.
Moreinformationaboutthisseriesathttp://www.springer.com/series/223
Marta Lewicka
A Course on Tug-of-War
Games with Random Noise
Introduction and Basic Constructions
MartaLewicka
DepartmentofMathematics
UniversityofPittsburgh
Pittsburgh,PA,USA
ISSN0172-5939 ISSN2191-6675 (electronic)
Universitext
ISBN978-3-030-46208-6 ISBN978-3-030-46209-3 (eBook)
https://doi.org/10.1007/978-3-030-46209-3
MathematicsSubjectClassification(2020):91A15,91A24,31C45,35B30,35G30,35J70
©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicencetoSpringerNatureSwitzerland
AG2020
Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether
thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse
ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and
transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar
ordissimilarmethodologynowknownorhereafterdeveloped.
Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication
doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant
protectivelawsandregulationsandthereforefreeforgeneraluse.
Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook
arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor
theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany
errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional
claimsinpublishedmapsandinstitutionalaffiliations.
ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG.
Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland
Preface
The goal of these Course Notes is to present a systematic overview of the basic
constructions and results pertaining to the recently emerged field of Tug-of-
War games, as seen from an analyst’s perspective. To a large extent, this book
represents the author’s own study itinerary, aiming at precision and completeness
ofaclassroomtextinanupperundergraduate-tograduate-levelcourse.
This book was originally planned as a joint project between Marta Lewicka
(University of Pittsburgh) and Yuval Peres (then Microsoft Research). Due to an
unforeseenturnofevents,neitherthecollaborationnortheexecutionoftheproject
intheirpriorlyconceivedformscouldhavebeenpursued.
The author wishes to dedicate this book to all women in mathematics, with
admiration and encouragement. The publishing profit will be donated to the
AssociationforWomeninMathematics.
Pittsburgh,PA,USA MartaLewicka
October2019
v
Contents
1 Introduction .................................................................. 1
2 TheLinearCase:RandomWalkandHarmonicFunctions............. 9
2.1 TheLaplaceEquationandHarmonicFunctions...................... 10
2.2 TheBallWalk .......................................................... 11
2.3 TheBallWalkandHarmonicFunctions .............................. 17
2.4 ConvergenceattheBoundaryandWalk-Regularity.................. 19
2.5 ASufficientConditionforWalk-Regularity .......................... 23
2.6* TheBallWalkValuesandPerronSolutions .......................... 27
2.7* TheBallWalkandBrownianTrajectories ............................ 29
2.8 BibliographicalNotes.................................................. 34
3 Tug-of-WarwithNoise:Casep ∈[2,∞).................................. 37
3.1 Thep-HarmonicFunctionsandthep-Laplacian..................... 38
3.2 TheAveragingPrinciples .............................................. 40
3.3 TheFirstAveragingPrinciple.......................................... 47
3.4 Tug-of-WarwithNoise:ABasicConstruction ....................... 51
3.5 TheFirstAveragingastheDynamicProgrammingPrinciple........ 57
3.6* Casep =2andBrownianTrajectories ............................... 60
3.7* EquivalenceofRegularityConditions................................. 65
3.8 BibliographicalNotes.................................................. 68
4 BoundaryAwareTug-of-WarwithNoise:Casep ∈(2,∞)............. 71
4.1 TheSecondAveragingPrinciple....................................... 72
4.2 TheBasicConvergenceTheorem...................................... 77
4.3 PlayingBoundaryAwareTug-of-WarwithNoise.................... 82
4.4 AProbabilisticProofoftheBasicConvergenceTheorem ........... 88
4.5* TheBoundaryAwareProcessatp =2andBrownian
Trajectories ............................................................. 93
4.6 BibliographicalNotes.................................................. 99
vii
viii Contents
5 Game-RegularityandConvergence:Casep ∈(2,∞)................... 101
5.1 Convergencetop-HarmonicFunctions............................... 102
5.2 Game-RegularityandConvergence.................................... 109
5.3 ConcatenatingStrategies............................................... 113
5.4 TheAnnulusWalkEstimate ........................................... 117
5.5 SufficientConditionsforGame-Regularity:Exterior
ConeProperty .......................................................... 120
5.6 SufficientConditionsforGame-Regularity:p >N.................. 122
5.7 BibliographicalNotes.................................................. 134
6 MixedTug-of-WarwithNoise:Casep ∈(1,∞) ......................... 135
6.1 TheThirdAveragingPrinciple......................................... 136
6.2 The Dynamic Programming Principle and the Basic
ConvergenceTheorem ................................................. 142
6.3 MixedTug-of-WarwithNoise......................................... 146
6.4 Sufficient Conditions for Game-Regularity: Exterior
CorkscrewCondition................................................... 152
6.5 Sufficient Conditions for Game-Regularity: Simply
ConnectednessinDimensionN =2.................................. 156
6.6 BibliographicalNotes.................................................. 161
A BackgroundinProbability.................................................. 163
A.1 ProbabilityandMeasurableSpaces.................................... 163
A.2 RandomVariablesandExpectation.................................... 165
A.3 ProductMeasures....................................................... 168
A.4 ConditionalExpectation................................................ 172
A.5 Independence........................................................... 174
A.6 MartingalesandStoppingTimes ...................................... 176
A.7 ConvergenceofMartingales ........................................... 180
B BackgroundinBrownianMotion.......................................... 185
B.1 DefinitionandConstructionofBrownianMotion .................... 185
B.2 TheWienerMeasureandUniquenessofBrownianMotion.......... 192
B.3 TheMarkovProperties................................................. 194
B.4 BrownianMotionandHarmonicExtensions ......................... 199
C BackgroundinPDEs ........................................................ 203
C.1 LebesgueLp SpacesandSobolevW1,p Spaces...................... 203
C.2 SemicontinuousFunctions............................................. 209
C.3 HarmonicFunctions.................................................... 210
C.4 Thep-LaplacianandItsVariationalFormulation..................... 214
C.5 WeakSolutionstothep-Laplacian.................................... 217
Contents ix
C.6 PotentialTheoryandp-HarmonicFunctions ......................... 221
C.7 BoundaryContinuityofWeakSolutionsto(cid:2) u=0................ 224
p
C.8 ViscositySolutionsto(cid:2) u=0....................................... 229
p
D SolutionstoSelectedExercises ............................................. 231
References......................................................................... 249
Index............................................................................... 253
Chapter 1
Introduction
The goal of these Course Notes is to present a systematic overview of the basic
constructions pertaining to the recently emerged field of Tug-of-War games with
randomnoise,asseenfromananalyst’sperspective.
TheLinearMotivation Theprototypicalellipticequation,arisingubiquitouslyin
Analysis,FunctionTheoryandMathematicalPhysics,istheLaplaceequation:
(cid:2) (cid:3)
.
(cid:2)u=div ∇u =0.
Laplace’s equation is linear and its solutions u : D → R, defined on a domain
D ⊂ RN,arecalledharmonicfunctions.Theyarepreciselythecriticalpoints(i.e.,
solutionstotheEuler–Lagrangeequation)ofthequadraticpotentialenergy:
ˆ
.
I (u)= |∇u(x)|2dx.
2
D
TheideabehindtheclassicalinterplayofthelinearPotentialTheoryandProbability
isthatharmonicfunctionsandrandomwalksshareacommonaveragingproperty.
Wenowbrieflyrecallthisrelation.
Indeed,ontheonehand,foranyu∈C2(RN)thereholdstheexpansion:
(cid:3)2
u(y)dy =u(x)+ (cid:2)u(x)+o((cid:3)2) as (cid:3) →0+.
2(N +2)
B(cid:3)(x)
ffl ´
.
Recall that u = 1 u denotes the average of u on a set B. The displayed
B |B| B
formulafollowsbywritingthequadraticTaylorexpansionofuatx:
©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusive 1
licencetoSpringerNatureSwitzerlandAG2020
M.Lewicka,ACourseonTug-of-WarGameswithRandomNoise,Universitext,
https://doi.org/10.1007/978-3-030-46209-3_1