ebook img

A Course on Rough Paths: With an Introduction to Regularity Structures PDF

262 Pages·2014·2.46 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Course on Rough Paths: With an Introduction to Regularity Structures

Universitext Peter K. Friz Martin Hairer A Course on Rough Paths With an Introduction to Regularity Structures Universitext Universitext Series editors Sheldon Axler San Francisco State University, San Francisco, CA, USA Vincenzo Capasso Università degli Studi di Milano, Milan, Italy Carles Casacuberta Universitat de Barcelona, Barcelona, Spain Angus MacIntyre Queen Mary University of London, London, UK Kenneth Ribet University of California, Berkeley, CA, USA Claude Sabbah CNRS, École polytechnique Centre de mathématiques, Palaiseau, France Endre Süli University of Oxford, Oxford, UK Wojbor A. Woyczynski Case Western Reserve University, Cleveland, OH, USA Universitext is a series of textbooks that presents material from a wide variety of mathematical disciplines at master’s level and beyond. The books, often well class-tested by their author, may have an informal, personal, even experimental approachtotheirsubjectmatter.Someofthemostsuccessfulandestablishedbooks intheserieshaveevolvedthroughseveraleditions,alwaysfollowingtheevolution of teaching curricula, into very polished texts. Thus as research topics trickle down into graduate-level teaching, first textbooks written for new, cutting-edge courses may make their way into Universitext. More information about thisseries athttp://www.springer.com/series/223 Peter K. Friz Martin Hairer (cid:129) A Course on Rough Paths With an Introduction to Regularity Structures 123 Peter K.Friz MartinHairer Technische UniversitätBerlin Department of Mathematics Berlin The Universityof Warwick Germany Coventry UK and Weierstraß-InstitutfürAngewandte Analysis undStochastik Berlin Germany ISSN 0172-5939 ISSN 2191-6675 (electronic) ISBN 978-3-319-08331-5 ISBN 978-3-319-08332-2 (eBook) DOI 10.1007/978-3-319-08332-2 LibraryofCongressControlNumber:2014946769 MathematicsSubjectClassification:60Hxx,34F05,35R60,93E03 SpringerChamHeidelbergNewYorkDordrechtLondon ©SpringerInternationalPublishingSwitzerland2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the CopyrightClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) To Waltraud and Rudolf Friz and To Xue-Mei Preface Sinceitsoriginaldevelopmentinthemid-ninetiesbyTerryLyons,culminatingin thelandmarkpaper [Lyo98],thetheoryofroughpathshasgrownintoamatureand widelyapplicablemathematicaltheory,andtherearebynowseveralmonographs dedicated to the subject, notably Lyons–Qian [LQ02], Lyons et al [LCL07] and Friz–Victoir[FV10b].Sowhydowebelievethatthereisroomforyetanotherbook onthismatter?Ourreasonsforwritingthisbookaretwofold. First,thetheoryofroughpathshasgatheredthereputationofbeingdifficultto accessfor“mainstream”probabilistsbecauseitreliesonsomenon-trivialalgebraic and / or geometric machinery. It is true that if one wishes to apply it to signals of arbitrary roughness, the general theory relies on several objects (in particular on the Hopf-algebraic properties of the free tensor algebra and the free nilpotent group embedded in it) that are unfamiliar to most probabilists. However, in our opinion,someofthemostinterestingapplicationsofthetheoryariseinthecontext ofstochasticdifferentialequations,wherethedrivingsignalisBrownianmotion.In thiscase,thetheorysimplifiesdramaticallyandessentiallynonon-trivialalgebraic orgeometricobjectsarerequiredatall.Thissimplificationiscertainlynotnovel. Indeed, early notes by Lyons, and then of Davie and Gubinelli, all took place in thissimplersetting(whichallowstoincorporateBrownianmotionandLe´vy’sarea). However,itdoesappeartousthatalltheseideascannowadaysbeputtogetherin unprecedentedsimplicity,andwemadeaconsciouschoicetorestrictourselvesto thissimplercasethroughoutmostofthisbook. Thesecondandmainraisond’eˆtreofthisbookisthatthescopeofthetheory has expanded dramatically over the past few years and that, in this process, the point of view has slightly shifted from the one exposed in the aforementioned monographs.WhileLyons’theorywasbuiltontheintegrationof1-forms,Gubinelli gaveanaturalextensiontotheintegrationofso-called“controlledroughpaths”.Asa benefit,differentialequationsdrivenbyroughpathscannowbesolvedbyfixedpoint arguments in linear Banach spaces which contain a sufficiently accurate (second order)localdescriptionofthesolution. Thisshiftinperspectivehasfirstenabledtheuseofroughpathstoprovidesolution theoriesforanumberofclassicallyill-posedstochasticpartialdifferentialequations vii viii Preface with one-dimensional spatial variables, including equations of Burgers type and theKPZequation.Morerecently,theperspectivewhichemphasiseslinearspaces containingsufficientlyaccuratelocaldescriptionsmodelledonsome(rough)input, spurred the development of the theory of “regularity structures” which allows to giveconsistentinterpretationsforanumberofill-posedequations,alsoinhigher dimensions.Itcanbeviewedasanextensionofthetheoryofcontrolledroughpaths, althoughitsformulationissomewhatdifferent.Inthelastchaptersofthisbook,we giveashortandratherinformal(i.e.veryfewproofs)introductiontothattheory, whichinparticularalsoshedsnewlightonsomeofthedefinitionsofthetheoryof roughpaths. Thisbookdoesnothavetheambitiontoprovideanexhaustivedescriptionofthe theoryofroughpaths,butrathertocomplementtheexistingliteratureonthesubject. Asaconsequence,thereareanumberofaspectsthatwechosenottotouch,ortodo soonlybarely.Oneomissionisthestudyofroughpathsofarbitrarilylowregularity: wedoprovidehintsatthegeneraltheoryattheendofseveralchapters,buttheseare self-containedandcanbeskippedwithoutimpactingtheunderstandingoftherest ofthebook.Anotherseriousomissionconcernsthesystematicstudyofsignatures, that is the collection of all iterated integrals over a fixed interval associated to a sufficientlyregularpath,providinganintriguingnonlinearcharacterisation. Wehaveusedseveralpartsofthisbookforlecturesandmini-courses.Inparticular, over the last years, the material on rough paths was given repeatedly by the first authoratTUBerlin(Chapters1-12,intheformofa4h/week,fullsemesterlecturefor anaudienceofbeginninggraduatestudentsinstochastics)andinsomemini-courses (Vienna,Columbia,Rennes,Toulouse;e.g.Chapters1-5withaselectionoffurther topics).ThematerialofChapters13-15originatesinanumberofminicoursesby the second author (Bonn, ETHZ, Toulouse, Columbia, XVII Brazilian School of Probability,44thSt.FlourSchoolofProbability,etc).The“KPZandroughpaths” summerschoolinRennes(2013)wasaparticularlygoodopportunitytotryoutmuch ofthematerialhereinjointmini-courseform–weareverygratefultotheorganisers fortheirefforts.Chapters13-15are,arguably,alittlehardertopresentinaclassroom. Jointly with Paul Gassiat, the first author gave this material as full lecture at TU Berlin(withexamplesclassesrunbyJoschaDiehl,andmorebackgroundmaterial on Schwartz distributions, Ho¨lder spaces and wavelet theory than what is found inthisbook);wealsostartedtouseconsistentlycoloursonourhandouts.Wefelt the resulting improvement in readability was significant enough to try it out also inthepresentbookandtaketheopportunitytothankJo¨rgSixtfromSpringerfor making this possible, aside from his professional assistance concerning all other aspectsofthisbookproject.Weareverygratefulforallthefeedbackwereceived fromparticipantsatallthesescourses.Furthermore,wewouldliketothankBruce Driver,PaulGassiat,MassimillianoGubinelli,TerryLyons,EtiennePardoux,Jeremy QuastelandHendrikWeberformanyinterestingdiscussionsonhowtopresentthis material.Inaddition,KhalilChouk,JoschaDiehlandSebastianRiedelkindlyoffered topartiallyproofreadthefinalmanuscript. Atlast,wewouldliketoacknowledgefinancialsupport:PKFwassupportedby theEuropeanResearchCouncilundertheEuropeanUnion’sSeventhFramework Preface ix Programme(FP7/2007-2013)/ERCgrantagreementnr.258237andDFG,SPP1324. MHwassupportedbytheLeverhulmetrustthroughaleadershipawardandbythe RoyalSocietythroughaWolfsonresearchaward. BerlinandCoventry, PeterK.Friz June2014 MartinHairer Contents 1 Introduction................................................... 1 1.1 Controlleddifferentialequations .............................. 1 1.2 Analogieswithotherbranchesofmathematics .................. 6 1.3 Regularitystructures........................................ 8 1.4 Frequentlyusednotations.................................... 9 1.5 Roughpaththeoryworksininfinitedimensions ................. 11 2 Thespaceofroughpaths........................................ 13 2.1 Basicdefinitions ........................................... 13 2.2 Thespaceofgeometricroughpaths ........................... 16 2.3 RoughpathsasLie-groupvaluedpaths ........................ 17 2.4 Geometricroughpathsoflowregularity ....................... 19 2.5 Exercises ................................................. 20 2.6 Comments ................................................ 25 3 Brownianmotionasaroughpath ................................ 27 3.1 Kolmogorovcriterionforroughpaths.......................... 27 3.2 Itoˆ Brownianmotion........................................ 31 3.3 StratonovichBrownianmotion ............................... 32 3.4 Brownianmotioninamagneticfield .......................... 34 3.5 CubatureonWienerSpace................................... 39 3.6 Scalinglimitsofrandomwalks ............................... 40 3.7 Exercises ................................................. 42 3.8 Comments ................................................ 46 4 Integrationagainstroughpaths.................................. 47 4.1 Introduction ............................................... 47 4.2 Integrationof1-forms....................................... 48 4.3 Integrationofcontrolledroughpaths .......................... 55 4.4 StabilityI:roughintegration ................................. 60 4.5 Controlledroughpathsoflowerregularity...................... 61 xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.