ebook img

A Course of Modern Analysis PDF

721 Pages·2021·9.975 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Course of Modern Analysis

A COURSE OF MODERN ANALYSIS Thisclassicworkhasbeenauniqueresourceforthousandsofmathematicians,scientists andengineerssinceitsfirstappearancein1902.Neveroutofprint,itscontinuingvalue liesinitsthoroughandexhaustivetreatmentofspecialfunctionsofmathematicalphysics and the analysis of differential equations from which they emerge. The book also is of historicalvalueasitwasthefirstbookinEnglishtointroducethethenmodernmethods ofcomplexanalysis. This fifth edition preserves the style and content of the original, but it has been supplemented with more recent results and references where appropriate. All the formulas have been checked and many corrections made. A complete bibliographical search has been conducted to present the references in modern form for ease of use. A new foreword by Professor S. J. Patterson sketches the circumstances of the book’s genesis and explains the reasons for its longevity. A welcome addition to any mathematician’s bookshelf, this will allow a whole new generation to experience the beautycontainedinthistext. e.t. whittaker was Professor of Mathematics at the University of Edinburgh. He wasawardedtheCopleyMedalin1954,‘forhisdistinguishedcontributionstobothpure andappliedmathematicsandtotheoreticalphysics’. g.n. watson was Professor of Pure Mathematics at the University of Birmingham. He is known, amongst other things, for the 1918 result now known as Watson’s lemma andwasawardedtheDeMorganMedalin1947. victor h. mollisProfessorintheDepartmentofMathematicsatTulaneUniversity. Heco-authoredEllipticCurves(Cambridge,1997)andwasawardedtheWeissPresiden- tialAwardin2017forhisGraduateTeaching.HefirstreceivedacopyofWhittakerand WatsonduringhisownundergraduatestudiesattheUniversidadSantaMariainChile. (Left):EdmundTaylorWhittaker(1873–1956);(Right):GeorgeNevilleWatson (1886–1965):UniversalHistoryArchive/Contributor/GettyImages. A COURSE OF MODERN ANALYSIS Fifth Edition An introduction to the general theory of infinite processes and of analytic functions with an account of the principal transcendental functions E.T. WHITTAKER AND G.N. WATSON Fiftheditioneditedandpreparedforpublicationby VictorH.Moll TulaneUniversity,Louisiana UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre,NewDelhi–110025,India 103PenangRoad,#05–06/07,VisioncrestCommercial,Singapore238467 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781316518939 DOI:10.1017/9781009004091 ©CambridgeUniversityPress1902,1915,1920,1927,2021 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstedition1902 Secondedition1915 Thirdedition1920 Fourthedition1927 Reprinted1935,1940,1946,1950,1952,1958,1962,1963 ReissuedintheCambridgeMathematicalLibrarySeries1996 Sixthprinting2006 Fifthedition2021 PrintedintheUnitedKingdombyTJBooksLimited,PadstowCornwall AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. ISBN978-1-316-51893-9Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Contents ForewordbyS.J.Patterson xvii PrefacetotheFifthEdition xxi PrefacetotheFourthEdition xxiii PrefacetotheThirdEdition xxiv PrefacetotheSecondEdition xxv PrefacetotheFirstEdition xxvi Introduction xxvii PartI TheProcessofAnalysis 1 1 ComplexNumbers 3 1.1 Rationalnumbers 3 1.2 Dedekind’stheoryofirrationalnumbers 4 1.3 Complexnumbers 6 1.4 Themodulusofacomplexnumber 7 1.5 TheArganddiagram 8 1.6 Miscellaneousexamples 9 2 TheTheoryofConvergence 10 2.1 Thedefinitionofthelimitofasequence 10 2.11 Definitionofthephrase‘oftheorderof’ 10 2.2 Thelimitofanincreasingsequence 10 2.21 Limit-pointsandtheBolzano–Weierstrasstheorem 11 2.22 Cauchy’stheoremonthenecessaryandsufficientconditionfortheexistenceofa limit 12 2.3 Convergenceofaninfiniteseries 13 2.31 Dirichlet’stestforconvergence 16 2.32 Absoluteandconditionalconvergence 17 2.33 Thegeometricseries,andtheseries(cid:205)∞ 1 17 n=1 ns 2.34 Thecomparisontheorem 18 v vi Contents 2.35 Cauchy’stestforabsoluteconvergence 20 2.36 D’Alembert’sratiotestforabsoluteconvergence 20 2.37 Ageneraltheoremonseriesforwhich lim |un+1/un|=1 21 n→∞ 2.38 Convergenceofthehypergeometricseries 22 2.4 Effectofchangingtheorderofthetermsinaseries 23 2.41 Thefundamentalpropertyofabsolutelyconvergentseries 24 2.5 Doubleseries 24 2.51 Methodsofsummingadoubleseries 25 2.52 Absolutelyconvergentdoubleseries 26 2.53 Cauchy’stheoremonthemultiplicationofabsolutelyconvergentseries 27 2.6 Powerseries 28 2.61 Convergenceofseriesderivedfromapowerseries 29 2.7 Infiniteproducts 30 2.71 Someexamplesofinfiniteproducts 31 2.8 Infinitedeterminants 34 2.81 Convergenceofaninfinitedeterminant 34 2.82 Therearrangementtheoremforconvergentinfinitedeterminants 35 2.9 Miscellaneousexamples 36 3 ContinuousFunctionsandUniformConvergence 40 3.1 Thedependenceofonecomplexnumberonanother 40 3.2 Continuityoffunctionsofrealvariables 40 3.21 Simplecurves.Continua 41 3.22 Continuousfunctionsofcomplexvariables 42 3.3 Seriesofvariableterms.Uniformityofconvergence 43 3.31 Ontheconditionforuniformityofconvergence 44 3.32 Connexionofdiscontinuitywithnon-uniformconvergence 45 3.33 Thedistinctionbetweenabsoluteanduniformconvergence 46 3.34 Acondition,duetoWeierstrass,foruniformconvergence 47 3.35 Hardy’stestsforuniformconvergence 48 3.4 Discussionofaparticulardoubleseries 49 3.5 Theconceptofuniformity 51 3.6 ThemodifiedHeine–Boreltheorem 51 3.61 Uniformityofcontinuity 52 3.62 Arealfunction,ofarealvariable,continuousinaclosedinterval,attainsitsupper bound 53 3.63 Arealfunction,ofarealvariable,continuousinaclosedinterval,attainsallvalues betweenitsupperandlowerbounds 54 3.64 Thefluctuationofafunctionofarealvariable 54 3.7 Uniformityofconvergenceofpowerseries 55 3.71 Abel’stheorem 55 3.72 Abel’stheoremonmultiplicationofconvergentseries 55 3.73 Powerserieswhichvanishidentically 56 3.8 Miscellaneousexamples 56 4 TheTheoryofRiemannIntegration 58 4.1 Theconceptofintegration 58 4.11 Upperandlowerintegrals 58 4.12 Riemann’sconditionofintegrability 59 Contents vii 4.13 Ageneraltheoremonintegration 60 4.14 Mean-valuetheorems 62 4.2 Differentiationofintegralscontainingaparameter 64 4.3 Doubleintegralsandrepeatedintegrals 65 4.4 Infiniteintegrals 67 4.41 Infiniteintegralsofcontinuousfunctions.Conditionsforconvergence 67 4.42 Uniformityofconvergenceofaninfiniteintegral 68 4.43 Testsfortheconvergenceofaninfiniteintegral 68 4.44 Theoremsconcerninguniformlyconvergentinfiniteintegrals 71 4.5 Improperintegrals.Principalvalues 72 4.51 Theinversionoftheorderofintegrationofacertainrepeatedintegral 73 4.6 Complexintegration 75 4.61 Thefundamentaltheoremofcomplexintegration 76 4.62 Anupperlimittothevalueofacomplexintegral 76 4.7 Integrationofinfiniteseries 77 4.8 Miscellaneousexamples 79 5 The Fundamental Properties of Analytic Functions; Taylor’s, Laurent’s and Liouville’sTheorems 81 5.1 Propertyoftheelementaryfunctions 81 5.11 Occasionalfailureoftheproperty 82 5.12 Cauchy’sdefinitionofananalyticfunctionofacomplexvariable 82 5.13 AnapplicationofthemodifiedHeine–Boreltheorem 83 5.2 Cauchy’stheoremontheintegralofafunctionroundacontour 83 5.21 Thevalueofananalyticfunctionatapoint,expressedasanintegraltakenrounda contourenclosingthepoint 86 5.22 Thederivativesofananalyticfunction f(z) 88 5.23 Cauchy’sinequalityfor f(n)(a) 89 5.3 Analyticfunctionsrepresentedbyuniformlyconvergentseries 89 5.31 Analyticfunctionsrepresentedbyintegrals 90 5.32 Analyticfunctionsrepresentedbyinfiniteintegrals 91 5.4 Taylor’stheorem 91 5.41 FormsoftheremainderinTaylor’sseries 94 5.5 Theprocessofcontinuation 95 5.51 Theidentityoftwofunctions 97 5.6 Laurent’stheorem 98 5.61 Thenatureofthesingularitiesofone-valuedfunctions 100 5.62 The‘pointatinfinity’ 101 5.63 Liouvillle’stheorem 103 5.64 Functionswithnoessentialsingularities 104 5.7 Many-valuedfunctions 105 5.8 Miscellaneousexamples 106 6 TheTheoryofResidues;ApplicationtotheEvaluationofDefiniteIntegrals 110 6.1 Residues 110 6.2 Theevaluationofdefiniteintegrals 111 6.21 Theevaluationoftheintegralsofcertainperiodicfunctionstakenbetweenthe limits0and2π 111 6.22 Theevaluationofcertaintypesofintegralstakenbetweenthelimits−∞and+∞ 112 viii Contents 6.23 Principalvaluesofintegrals 116 6.24 Evaluationofintegralsoftheform∫∞xa−1Q(x)dx 117 0 6.3 Cauchy’sintegral 118 6.31 Thenumberofrootsofanequationcontainedwithinacontour 119 6.4 Connexionbetweenthezerosofafunctionandthezerosofitsderivative 120 6.5 Miscellaneousexamples 121 7 TheExpansionofFunctionsinInfiniteSeries 125 7.1 AformuladuetoDarboux 125 7.2 TheBernoulliannumbersandtheBernoullianpolynomials 125 7.21 TheEuler–Maclaurinexpansion 127 7.3 Bürmann’stheorem 129 7.31 Teixeira’sextendedformofBürmann’stheorem 131 7.32 Lagrange’stheorem 133 7.4 Theexpansionofaclassoffunctionsinrationalfractions 134 7.5 Theexpansionofaclassoffunctionsasinfiniteproducts 137 7.6 ThefactortheoremofWeierstrass 138 7.7 Expansioninaseriesofcotangents 140 7.8 Borel’stheorem 141 7.81 Borel’sintegralandanalyticcontinuation 142 7.82 Expansionsinseriesofinversefactorials 143 7.9 Miscellaneousexamples 145 8 AsymptoticExpansionsandSummableSeries 153 8.1 Simpleexampleofanasymptoticexpansion 153 8.2 Definitionofanasymptoticexpansion 154 8.21 Anotherexampleofanasymptoticexpansion 154 8.3 Multiplicationofasymptoticexpansions 156 8.31 Integrationofasymptoticexpansions 156 8.32 Uniquenessofanasymptoticexpansion 157 8.4 Methodsofsummingseries 157 8.41 Borel’smethodofsummation 158 8.42 Euler’smethodofsummation 158 8.43 Cesàro’smethodofsummation 158 8.44 ThemethodofsummationofRiesz 159 8.5 Hardy’sconvergencetheorem 159 8.6 Miscellaneousexamples 161 9 FourierSeriesandTrigonometricSeries 163 9.1 DefinitionofFourierseries 163 9.11 Natureoftheregionwithinwhichatrigonometricalseriesconverges 164 9.12 Valuesofthecoefficientsintermsofthesumofatrigonometricalseries 167 9.2 OnDirichlet’sconditionsandFourier’stheorem 167 9.21 TherepresentationofafunctionbyFourierseriesforrangesotherthan(−π,π) 168 9.22 Thecosineseriesandthesineseries 169 9.3 ThenatureofthecoefficientsinaFourierseries 171 9.31 DifferentiationofFourierseries 172 9.32 Determinationofpointsofdiscontinuity 173 9.4 Fejér’stheorem 174 Contents ix 9.41 TheRiemann–Lebesguelemmas 177 9.42 TheproofofFourier’stheorem 179 9.43 TheDirichlet–BonnetproofofFourier’stheorem 181 9.44 TheuniformityoftheconvergenceofFourierseries 183 9.5 TheHurwitz–LiapounofftheoremconcerningFourierconstants 185 9.6 Riemann’stheoryoftrigonometricalseries 187 9.61 Riemann’sassociatedfunction 188 9.62 PropertiesofRiemann’sassociatedfunction;Riemann’sfirstlemma 189 9.63 Riemann’stheoremontrigonometricalseries 191 9.7 Fourier’srepresentationofafunctionbyanintegral 193 9.8 Miscellaneousexamples 195 10 LinearDifferentialEquations 201 10.1 Lineardifferentialequations 201 10.2 Solutionsinthevicinityofanordinarypoint 201 10.21 Uniquenessofthesolution 203 10.3 Pointswhichareregularforadifferentialequation 204 10.31 Convergenceoftheexpansionof§10.3 206 10.32 Derivationofasecondsolutioninthecasewhenthedifferenceoftheexponentsis anintegerorzero 207 10.4 Solutionsvalidforlargevaluesof|z| 209 10.5 Irregularsingularitiesandconfluence 210 10.6 Thedifferentialequationsofmathematicalphysics 210 10.7 Lineardifferentialequationswiththreesingularities 214 10.71 TransformationsofRiemann’sP-equation 215 10.72 TheconnexionofRiemann’sP-equationwiththehypergeometricequation 215 10.8 Lineardifferentialequationswithtwosingularities 216 10.9 Miscellaneousexamples 216 11 IntegralEquations 219 11.1 Definitionofanintegralequation 219 11.11 Analgebraicallemma 220 11.2 Fredholm’sequationanditstentativesolution 221 11.21 InvestigationofFredholm’ssolution 223 11.22 Volterra’sreciprocalfunctions 226 11.23 Homogeneousintegralequations 228 11.3 Integralequationsofthefirstandsecondkinds 229 11.31 Volterra’sequation 229 11.4 TheLiouville–Neumannmethodofsuccessivesubstitutions 230 11.5 Symmetricnuclei 231 11.51 Schmidt’stheoremthat,ifthenucleusissymmetric,theequationD(λ)=0hasat leastoneroot 232 11.6 Orthogonalfunctions 233 11.61 Theconnexionoforthogonalfunctionswithhomogeneousintegralequations 234 11.7 Thedevelopmentofasymmetricnucleus 236 11.71 ThesolutionofFredholm’sequationbyaseries 237 11.8 SolutionofAbel’sintegralequation 238 11.81 Schlömilch’sintegralequation 238 11.9 Miscellaneousexamples 239

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.