ebook img

A Course in Robust Control Theory - A Convex Approach PDF

398 Pages·2005·2.012 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Course in Robust Control Theory - A Convex Approach

A Course in Robust Control Theory a convex approach Geir E. Dullerud Fernando G. Paganini University of Illinois University of California Urbana-Champaign Los Angeles Contents 0 Introduction 1 0.1 System representations . . . . . . . . . . . . . . . . . . . 2 0.1.1 Block diagrams . . . . . . . . . . . . . . . . . . . 2 0.1.2 Nonlinear equations and linear decompositions . . 4 0.2 Robust control problems and uncertainty . . . . . . . . . 9 0.2.1 Stabilization . . . . . . . . . . . . . . . . . . . . . 9 0.2.2 Disturbances and commands . . . . . . . . . . . . 12 0.2.3 Unmodeled dynamics . . . . . . . . . . . . . . . . 15 1 Preliminaries in Finite Dimensional Space 18 1.1 Linear spaces and mappings . . . . . . . . . . . . . . . . 18 1.1.1 Vector spaces . . . . . . . . . . . . . . . . . . . . 19 1.1.2 Subspaces . . . . . . . . . . . . . . . . . . . . . . 21 1.1.3 Bases, spans, and linear independence . . . . . . 22 1.1.4 Mappings and matrix representations . . . . . . 24 1.1.5 Change of basis and invariance . . . . . . . . . . 28 1.2 Subsets and Convexity . . . . . . . . . . . . . . . . . . . 30 1.2.1 Some basic topology . . . . . . . . . . . . . . . . 31 1.2.2 Convex sets . . . . . . . . . . . . . . . . . . . . . 32 1.3 Matrix Theory . . . . . . . . . . . . . . . . . . . . . . . . 38 1.3.1 Eigenvalues and Jordan form . . . . . . . . . . . 39 1.3.2 Self-adjoint, unitary and positive de(cid:12)nite matrices 41 1.3.3 Singular value decomposition . . . . . . . . . . . 45 1.4 Linear Matrix Inequalities . . . . . . . . . . . . . . . . . 47 ii Contents 1.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2 State Space System Theory 57 2.1 The autonomous system . . . . . . . . . . . . . . . . . . 58 2.2 Controllability . . . . . . . . . . . . . . . . . . . . . . . . 61 2.2.1 Reachability . . . . . . . . . . . . . . . . . . . . . 61 2.2.2 Properties of controllability . . . . . . . . . . . . 66 2.2.3 Stabilizability and the PBH test . . . . . . . . . . 69 2.2.4 Controllability from a single input. . . . . . . . . 72 2.3 Eigenvalue assignment . . . . . . . . . . . . . . . . . . . 74 2.3.1 Single input case . . . . . . . . . . . . . . . . . . 74 2.3.2 Multi input case . . . . . . . . . . . . . . . . . . . 75 2.4 Observability . . . . . . . . . . . . . . . . . . . . . . . . 77 2.4.1 The unobservable subspace. . . . . . . . . . . . . 78 2.4.2 Observers . . . . . . . . . . . . . . . . . . . . . . 81 2.4.3 Observer-Based Controllers . . . . . . . . . . . . 83 2.5 Minimal realizations . . . . . . . . . . . . . . . . . . . . 84 2.6 Transfer functions and state space . . . . . . . . . . . . . 87 2.6.1 Real-rational matrices and state space realizations 89 2.6.2 Minimality . . . . . . . . . . . . . . . . . . . . . . 92 2.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 3 Linear Analysis 97 3.1 Normed and inner product spaces. . . . . . . . . . . . . 98 3.1.1 Complete spaces . . . . . . . . . . . . . . . . . . 101 3.2 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . 103 3.2.1 Banach algebras . . . . . . . . . . . . . . . . . . . 107 3.2.2 Some elements of spectral theory . . . . . . . . . 110 3.3 Frequency domain spaces: signals . . . . . . . . . . . . . 113 3.3.1 The space L^2 and the Fourier transform . . . . . 113 3.3.2 The spaces H2 and H2? and the Laplace transform 115 3.3.3 Summarizing the big picture . . . . . . . . . . . . 119 3.4 Frequency domain spaces: operators . . . . . . . . . . . . 120 3.4.1 Time invariance and multiplication operators . . 121 3.4.2 Causality with time invariance . . . . . . . . . . . 122 3.4.3 Causality and H . . . . . . . . . . . . . . . . . 124 1 3.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 4 Model realizations and reduction 131 4.1 Lyapunov equations and inequalities . . . . . . . . . . . 131 4.2 Observability operator and gramian . . . . . . . . . . . . 134 4.3 Controllability operator and gramian . . . . . . . . . . . 137 4.4 Balanced realizations . . . . . . . . . . . . . . . . . . . . 140 4.5 Hankel operators . . . . . . . . . . . . . . . . . . . . . . 143 4.6 Model reduction . . . . . . . . . . . . . . . . . . . . . . . 147 Contents iii 4.6.1 Limitations . . . . . . . . . . . . . . . . . . . . . 148 4.6.2 Balanced truncation . . . . . . . . . . . . . . . . 151 4.6.3 Inner transfer functions . . . . . . . . . . . . . . . 154 4.6.4 Bound for the balanced truncation error . . . . . 155 4.7 Generalized gramiansand truncations. . . . . . . . . . . 160 4.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 5 Stabilizing Controllers 167 5.1 System Stability . . . . . . . . . . . . . . . . . . . . . . . 169 5.2 Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . 172 5.2.1 Static state feedback stabilization via LMIs . . . 173 5.2.2 An LMI characterization of the stabilization prob- lem . . . . . . . . . . . . . . . . . . . . . . . . . . 174 5.3 Parametrizationof stabilizing controllers . . . . . . . . . 175 5.3.1 Coprime factorization . . . . . . . . . . . . . . . . 176 5.3.2 Controller Parametrization . . . . . . . . . . . . . 179 5.3.3 Closed-loop maps for the general system . . . . . 183 5.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 6 H2 Optimal Control 188 6.1 Motivation for H2 control . . . . . . . . . . . . . . . . . 190 6.2 Riccati equation and Hamiltonian matrix . . . . . . . . . 192 6.3 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 6.4 State feedback H2 synthesis via LMIs . . . . . . . . . . . 202 6.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 7 H Synthesis 208 1 7.1 Two important matrix inequalities . . . . . . . . . . . . 209 7.1.1 The KYP Lemma . . . . . . . . . . . . . . . . . . 212 7.2 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 7.3 Controller reconstruction . . . . . . . . . . . . . . . . . . 222 7.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 8 Uncertain Systems 227 8.1 Uncertainty modeling and well-connectedness . . . . . . 229 8.2 Arbitrary block-structured uncertainty . . . . . . . . . . 234 8.2.1 A scaled small-gain test and its su(cid:14)ciency . . . . 236 8.2.2 Necessity of the scaled small-gain test. . . . . . . 239 8.3 The Structured Singular Value . . . . . . . . . . . . . . . 245 8.4 Time invariant uncertainty . . . . . . . . . . . . . . . . . 248 8.4.1 Analysis of time invariant uncertainty. . . . . . . 249 8.4.2 The matrix structured singular value and its upper bound . . . . . . . . . . . . . . . . . . . . . . . . 257 8.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 iv Contents 9 Feedback Control of Uncertain Systems 270 9.1 Stability of feedback loops . . . . . . . . . . . . . . . . . 273 9.1.1 L2-extended and stability guarantees . . . . . . . 274 9.1.2 Causality and maps on L2-extended . . . . . . . . 277 9.2 Robust stability and performance . . . . . . . . . . . . . 280 9.2.1 Robust stability under arbitrary structured uncer- tainty. . . . . . . . . . . . . . . . . . . . . . . . . 281 9.2.2 Robust stability under LTI uncertainty . . . . . . 281 9.2.3 Robust PerformanceAnalysis . . . . . . . . . . . 282 9.3 Robust Controller Synthesis . . . . . . . . . . . . . . . . 284 9.3.1 Robust synthesis against (cid:1)a;c . . . . . . . . . . 285 9.3.2 Robust synthesis against (cid:1)TI . . . . . . . . . . . 289 9.3.3 D-K iteration: a synthesis heuristic . . . . . . . . 293 9.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 10 Further Topics: Analysis 298 10.1 Analysis via Integral Quadratic Constraints . . . . . . . 298 10.1.1 Analysis results . . . . . . . . . . . . . . . . . . . 303 10.1.2 The search for an appropriateIQC . . . . . . . . 308 10.2 Robust H2 Performance Analysis . . . . . . . . . . . . . 310 10.2.1 Frequencydomainmethodsandtheirinterpretation 311 10.2.2 State-Space Bounds Involving Causality . . . . . 316 10.2.3 Comparisons . . . . . . . . . . . . . . . . . . . . 320 10.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . 321 11 Further Topics: Synthesis 323 11.1 Linear parameter varying and multidimensional systems 324 11.1.1 LPV synthesis . . . . . . . . . . . . . . . . . . . . 327 11.1.2 Realization theory for multidimensional systems . 333 11.2 A Framework for Time Varying Systems: Synthesis and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 11.2.1 Block-diagonaloperators . . . . . . . . . . . . . 338 11.2.2 The system function . . . . . . . . . . . . . . . . 340 11.2.3 Evaluating the ‘2 induced norm . . . . . . . . . . 344 11.2.4 LTV synthesis . . . . . . . . . . . . . . . . . . . . 347 11.2.5 Periodic systems and (cid:12)nite dimensional conditions 349 A Some Basic Measure Theory 352 A.1 Sets of zero measure . . . . . . . . . . . . . . . . . . . . 352 A.2 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 355 A.3 Comments on norms and Lp spaces . . . . . . . . . . . . 357 B Proofs of Strict Separation 359 C (cid:22)-Simple Structures 365 Contents v C.1 The case of (cid:1)1;1 . . . . . . . . . . . . . . . . . . . . . . 366 C.2 The case of (cid:1)0;3 . . . . . . . . . . . . . . . . . . . . . . 370 References 375 Preface Research in robust control theory has been one of the most active areas of mainstream systems theory since the late 70s. This research activity has been at the con(cid:13)uence of dynamical systems theory, functional analysis, matrixanalysis,numericalmethods,complexitytheory,andengineeringap- plications.Thedisciplinehasinvolvedinteractionsbetweendiverseresearch groups including pure mathematicians, applied mathematicians, computer scientists and engineers, and during its development there has been a sur- prisingly close connection between pure theory and tangible engineering application. By now this research e(cid:11)ort has produced a rather extensive set of approaches using a wide variety of mathematical techniques, and applications of robust control theory are spreading to areas as diverse as control of (cid:13)uids, power networks, and the investigation of feedback mech- anisms in biology. During the 90s the theory has seen major advances and achievedanewmaturity,centeredaroundthenotionofconvexity.Thisem- phasisis two-fold.On onehand, the methods of convexprogramminghave been introduced to the (cid:12)eld and released a wave of computational meth- ods which, interestingly, have impact beyond the study of control theory. Simultaneously a new understanding has developed on the computational complexity implications of uncertainty modeling; in particular it has be- comeclearthatonemustgobeyondthetimeinvariantstructuretodescribe uncertainty in terms amenable to convex robustness analysis. Our broad goal in this book is to give a graduate-level course on ro- bust control theory that emphasizes these new developments, but at the same time conveys the main principles and ubiquitous tools at the heart of the subject. This courseis intended asan introduction to robustcontrol Contents vii theory, and begins at the level of basic systems theory, but ends having introduced the issues and machinery of current active research. Thus the pedagogicalobjectivesofthebookare(1)tointroduceacoherentanduni- (cid:12)ed framework for studying robust control theory; (2) to provide students with the control-theoretic background required to read and contribute to the research literature; (3) the presentation of the main ideas and demon- strations of the major results of robust control theory. We therefore hope the book will be of value to mathematical researchers and computer sci- entists wishing to learn about robust control theory, graduate students planningtodoresearchinthearea,andengineeringpractitionersrequiring advancedcontroltechniques.Thebookismeanttofeatureconvexmethods and the viewpoint gained from a general operator theory setting, however rather than be purist we have endeavored to give a balanced course which (cid:12)ts these themes in with the established landscape of robust control the- ory. The e(cid:11)ect of this intention on the book is that as it progresses these themesareincreasinglyemphasized,whereasmoreconventionaltechniques appear less frequently. The current research literature in robust control theory is vast and so we have not attempted to cover all topics, but have insteadselectedthosethatwebelievearecentralandmost e(cid:11)ectivelyform a launching point for further study of the (cid:12)eld. The text is written to comprise a two-quarter or two-semester gradu- ate course in applied mathematics or engineering. The material presented has been successfully taught in this capacity during the past few years by the authors at Caltech, University of Waterloo, University of Illinois, and UCLA. For students with background in state space methods a serious approachat asubset of the materialcan be achievedin one semester.Stu- dents are assumed to have familiarity with linear algebra, and otherwise only advanced calculus and basic complex analysis are strictly required. After an introduction and a preliminary technical chapter, the course begins with athoroughintroduction tostate space systems theory.It then moves on to cover open-loop systems issues using the newly introduced concept of a norm. Following this the simplest closed-loop synthesis issue isaddressed,thatofstabilization.Thentherearetwochaptersonsynthesis whichcovertheH2andH formulations.Nextopen-loopuncertainsystem 1 models are introduced; this chapter gives a comprehensive treatment of structured uncertainty using perturbations that are either time invariant orarbitrary.Theresultsonopen-loopuncertainsystemsarethenappliedto feedback control in the following chapter where both closed-loop analysis and synthesis are addressed. The (cid:12)nal two chapters are devoted to the presentation of four advanced topics in a more descriptive manner. In the preliminarychapter of the book some basic ideas from convex analysisare presented as is the important concept of a linear matrix inequality (LMI). Linear matrix inequalities are perhaps the major analytical tool used in thistext,andcombinedwiththeoperatortheoryframeworkpresentedlater viii Contents provide a powerful perspective. A more detailed summary of the chapters is given below. Chapter 1 Preliminaries in Finite Dimensional Space Elementary linear algebra is (cid:12)rst reviewed, and a short summary of basic concepts from convex analysis are provided. A selection of matrix theory topicsispresentedincludingJordanformandsingularvaluedecomposition. The chapter ends with a section on linear matrix inequalities. Chapter 2 State Space Systems Theory Thischapterintroducesthebasicstatespacemodel.Controllability,reach- abilityandstabilizabilityarethencoveredinconjunctionwithvarioustests for these properties. Eigenvalue assignment is discussed in full for multi- inputsystems.Theconceptofobservabilityisthenpresentedtogetherwith an introduction to observers and observerbased controllers. Minimal real- izations are treated, and the connection between state space realizations and transfer functions is made. Chapter 3 Linear Analysis The major objective of this chapter is to introduce the operator theory needed in the sequel. It begins by introducing normed and inner product spaces, and then the operators on Hilbert space. The focus of the text is systems with L2 inputs, and so a number of related function spaces are presented, including the H2 and H spaces. The various connections of 1 these spaces with time invariance and causality are introduced. Chapter 4 Model Realization and Reduction The chapter initiates the quantitative study of systems using norms as the system measure. The open-loop characteristics of systems are exam- ined using the controllabilty and observability gramians, and a geometric motivation is given for balanced realizations. Hankel operators and singu- lar values are then discussed, followed by model reduction using balanced truncation. Chapter 5 Stabilizing Controllers The concepts of closed-loop well-posedness and stability are de(cid:12)ned. An LMI solution to (cid:12)nding a stabilizing controller is stated. Following this thequestionof parametrizingall stabilizingcontrollersispursued,and the important idea of a coprime factorization is brought in. With this tool a complete controller parametrization is given.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.