ebook img

A construction of a complete bounded null curve in $\mathbb{C}^3$ PDF

0.19 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A construction of a complete bounded null curve in $\mathbb{C}^3$

COMPLETE BOUNDED NULL CURVES 9 IMMERSED IN C3 AND SL(2,C) 0 0 2 FRANCISCOMARTIN,MASAAKIUMEHARA,ANDKOTAROYAMADA y a M ABSTRACT. Weconstructasimplyconnectedcompleteboundedmeancurvatureonesur- face in the hyperbolic 3-space H3. Such a surface in H3 can be lifted as acomplete boundednullcurveinSL(2,C). UsingatransformationbetweennullcurvesinC3 and 7 nullcurvesinSL(2,C),weareabletoproducethefirstexamplesofcompletebounded nullcurvesinC3. Asanapplication, wecanshowtheexistenceofacompletebounded ] minimalsurfaceinR3whoseconjugateminimalsurfaceisalsobounded. Moreover,we G canshowtheexistenceofacompleteboundedimmersedcomplexsubmanifoldinC2. D . h t a 1. INTRODUCTION m Theexistenceofcompletenonflatminimalsurfaceswithboundedcoordinatefunctions, [ has been the instigator of many interesting articles on the theory of minimal surfaces in 6 R3 and C3 over the last few decades. The question of whether there exists a complete v bounded complex submanifold in Cn was proposed by P. Yang in [Y] and answered by 0 P.Jonesin[J]wherethisauthorpresentashortandelegantmethodtoconstructbounded 3 5 (embedded) complex curves X : D1 C3, where D1 means the open unit disc of the 3 complex plane. Although these curve→s are minimal in C3 (they are holomorphic), their 0 respectiveprojectionsReX andImX arenotminimalinR3. Ifwepursuethis,weneed 6 toimposethatthecomplexcurveX :D C3alsosatisfies 0 1 → / (1.1) (X′)2+(X′)2+(X′)2 =0 X =(X ,X ,X ) , h 1 2 3 1 2 3 t where ′ denotesthe derivativewith respectto the complexcoordinateon D . From now a (cid:0) (cid:1) 1 m on,curvesofthiskindwillbecalledholomorphicnullcurves. ThepreviousquestioniscloselyrelatedtoanearlierquestionbyE.Calabi,whoaskedin : v 1965[C]whetherornotitispossibleforacompleteminimalsurfaceinR3tobecontained Xi inaballinR3. Twoarticles,inparticular,havemadeveryimportant,ifnotfundamental, contributionsto this problem. The first one was by L. P. Jorge and F. Xavier [JX], who r a constructedexamplesofcompleteminimalsurfacesinaslab. ThesecondonewasbyN. Nadirashvili[N],whomorerecentlyproducedexamplescontainedinaball.Inbothcases, thekeystepwastheingenioususeofRunge’sclassicaltheorem. InrespecttocompleteboundedminimalnullcurvesinCn,theexistenceofsuchcurves has been an open problemfor n = 3. For the case n = 2, J. Bourgain[Bo] provesthat these curvescannotexist. Moreover,Jonesin[J] provedthatfor n 4 itis possibleto constructcompleteboundednullcurvesinCn. ≥ In this paper we give a positive solution to the existence of complete bounded null curvesinC3andobtainsomeinterestingconsequences. Tobemoreprecise,weprovethe followingtheorem: TheoremA. ThereisacompleteholomorphicnullimmersionX: D C3whoseimage 1 isbounded.Inparticular,thereisacompletebounded(immersed) min→imalsurfaceinR3 suchthatitsconjugateminimalsurfaceisalsobounded. Date:May06,2008. TheFirstauthorispartiallysupportedbyMEC-FEDERGrantno.MTM2007-61775. Thesecondandthe thirdauthorsarepartially supportedbyGrant-in-AidforScientificResearch(A)No.19204005andScientific Research(B)No.14340024,respectively,fromtheJapanSocietyforthePromotionofScience. 1 2 FRANCISCOMARTIN,MASAAKIUMEHARA,ANDKOTAROYAMADA Here,wedenotebyD (resp.D )theopen(resp.closed)ballinCofradiusrcentered r r at0. Since the projection of X into C2 gives a holomorphic immersion, we also get the followingresult,seeSection3.2: CorollaryB. ThereisacompleteholomorphicimmersionY : D C2 whoseimageis 1 → bounded. We remark that the existence of complete bounded complex submanifolds in C3 has beenshownin[J]. TheoremAisequivalenttotheexistenceofcompleteboundednullcurvesinSL(2,C), andalsoequivalenttocompleteboundedmeancurvature1surfaces(i.e.CMC-1surface)in thehyperbolic3-space 3. Hereaholomorphicmap : M SL(2,C)fromaRiemann surface M to the compHlexLie groupSL(2,C) is callBed null→if the determinantdet ′ of ′ = d /dz vanishes, that is det ′ = 0, where z is a complex coordinate of MB. A B B B projectionβ = π : M 3 ofanullholomorphiccurveisaCMC-1surfacein 3, whereπ: SL(2,C◦)B 3→=SHL(2,C)/SU(2)istheprojection,see(2.12)inSectionH2.2. →H Then Theorem A is a corollary to the existence of complete bounded null curve in SL(2,C) as in Theorem C, see Section 3.1. To state the theorem, we define the matrix norm as |·| A :=√traceAA∗ (A∗ :=tA), | | for 2 2-matrix A (see Appendix A). Note that if A SL(2,C), A √2, and the × ∈ | | ≥ equalityholdsifandonlyifAistheidentitymatrix. TheoremC. Foreachrealnumberτ >√2,thereisacompleteholomorphicnullimmer- sion Y : D SL(2,C) such that Y < τ. In particular, there is a complete CMC-1 1 surface in 3→= SL(2,C)/SU(2)of|ge|nuszero with one endcontainedin a givengeo- desicball(Hofradiuscosh−1(τ2/2),seeLemmaA.2inAppendixA). AprojectionofimmersednullholomorphiccurvesinC3(resp.SL(2,C))ontoLorentz- Minkowski3-spaceL3(resp. deSitter3-spaceS3)givesmaximalsurfaces(resp. CMC-1 1 surfaces),whichmayadmitsingularpoints.Recently,Alarcon[A]constructedaspace-like maximalsurfaceboundedbyahyperboloidinL3,whichisweaklycompleteinthesense of[UY3]butmaynotbebounded. Itshouldberemarkedthatourboundednullcurvein C3 inTheoremAinducesaboundedmaximalsurfaceinL3 asarefinementofAlarcon’s result: CorollaryD. Thereareaweaklycompletespace-likemaximalsurfaceinL3andaweakly completespace-likeCMC-1surfaceinS3whoseimagearebounded. 1 The definition of weak completeness for maximal surfaces and for CMC-1 surfaces (withsingularities)arementionedintheproofinSection3.3. Our procedure to prove Theorem C is similar in style to that used by Nadirashvili in [N] (see also [MN] for a more general construction). However, we have to improvethe techniquesbecauseNadirashvili’smethoddoesnotallowustocontroltheimaginarypart oftheresultingminimalimmersion. Inordertodothis,weworkonaCMC-1surfacein hyperbolic3-space 3 instead of a minimalsurface in Euclidean3-space. On each step H ofconstruction,wewillapplyRungeapproximationforverysmallregionofthesurface, and so we can treat such a small part of the CMC-1 surface like as minimal surface in the Euclidean3-space, which is the first crucialpoint. We shall give an error estimation betweenminimalsurfaceandtheCMC-1surfacebyusingthewell-knownODE-technique (see A.2in AppendixA). Next, we willliftthe resultingboundedCMC-1 surfaceintoa null curve SL(2,C). Since 3 is a quotient of SL(2,C) by SU(2), the compactness of H SU(2)yieldstheboundednessoftheliftednullcurveassociatedwiththeboundedCMC- 1 surface. Finally, using a transformation between null curves in C3 and null curves in COMPLETEBOUNDEDNULLCURVES 3 SL(2,C), we can get a complete bounded null immersed curve in C3 from the one in SL(2,C). Section3.2isdevotedtoexplainthisequivalence. ToproveTheoremC,thefollowinglemmaplaysacrucialrole(seeSection3.4): MainLemma. Letρandτ bepositiverealnumbersandX: D SL(2,C)aholomor- 1 → phicnullimmersionsuchthat 1 0 (1) X(0)=id= , 0 1 (cid:18) (cid:19) (2) (D ,ds2 )containsthegeodesicdiscofradiusρwithcenter0,whereds2 isthe 1 X X inducedmetricbyX definedin(2.11). (3) X(z) τ forz D . 1 | |≤ ∈ Then for arbitrary positive numbers ε and s, there exists a holomorphic null immersion Y =Y : D SL(2,C)suchthat X,ε,s 1 → (a) Y(0)=id, (b) (D ,ds2)containsthegeodesicdiscofradiusρ+swithcenter0, 1 Y (c) Y(z) τ√1+2s2+εforz D , 1 (d) |Y X|≤< εand φY φX <∈εontheopendiscD1−ε,whereφX = X−1X′, φ| −=Y|−1Y′and|′ =d−/dzf|orthecomplexcoordinatezinD . Y 1 Remark. Acrucialdifferencebetweenourmainlemmaandthemainlemmain[N]isthe estimation of extrinsic radius. In [N], the extrinsic radius is estimated as √r2+s2 +ε andtheboundednessoftheextrinsicradiusoftheresultingsurfacereducestothefactthat ∞ n−2converges.However,ourestimationoftheextrinsicradiusismultiplicativeand rednu=c1estothefactthat ∞ (1+n−2)converges. P n=1 AsanapplicationofQTheoremA,theexistenceofhighergenusexamplescorresponding toCorollaryBandCorollaryDisrecentlyshownin[MUY]. Wewouldliketofinishthisintroductionbymentioningarelatingresult. P.F.X.Mu¨ller in[M]introducedaremarkablerelationshipbetweencompleteboundedminimalsurfaces inR3andmartingales. 2. PRELIMINARIES 2.1. NullcurvesinC3. LetM beaRiemannsurfaceand : M C3 anullholomor- F → phicimmersion,andset d (2.1) Φ=φdz, φ=φF = ′ ′ = , F dz (cid:18) (cid:19) wherez isalocalcomplexcoordinateonM. Thenφ = (φ ,φ ,φ )isa locallydefined 1 2 3 C3-valuedholomorphicfunctionsuchthat (2.2) φ φ=0 and φ >0, · | | where istheinnerproductofC3definedby · (2.3) x y =x y +x y +x y x=(x ,x ,x ),y =(y ,y ,y ) , 1 1 2 2 3 3 1 2 3 1 2 3 · and x = √x x isthe HermitiannormofC(cid:0)3. Conversely,ifa C3-valued1-fo(cid:1)rmΦ = | | · φdzonasimplyconnectedRiemannsurfaceM satisfies(2.2), z (2.4) (z):= Φ: M C3 Φ F −→ Zz0 isaholomorphicnullimmersion,wherez M isabasepoint. 0 ∈ Wedefinetheinducedmetricds2 of as F F 1 1 1 1 (2.5) ds2F = Φ2 = φ2 dz 2 = λ2F dz 2 = ∗ , (λF := φ), 2| | 2| | | | 2 | | 2F h i | | 4 FRANCISCOMARTIN,MASAAKIUMEHARA,ANDKOTAROYAMADA where , isthecanonicalHermitianmetricofC3.Notethatds2 isahalf ofthepull-back F ∗ ,h,aindcoincideswiththeinducedmetricoftheminimalimmersion F h i Re : M R3. F −→ Since isanullcurve,wecanwrite F 1 (2.6) Φ= (1 g2),i(1+g2),2g ηdz, i=√ 1 2 − − wheregandηdzareamero(cid:0)morphicfunctionanda(cid:1)holomorphic1-form,respectively.We call(g,ηdz)theWeierstrassdataof . UsingtheseWeierstrassdata,wecanwrite F 1 (2.7) λF = (1+ g 2)η . √2 | | | | Here, g: M C can be identified with the Gauss map by the stereographic → ∪ {∞} projection. 2.2. NullcurvesinSL(2,C). Aholomorphicmap fromaRiemannsurfaceM intothe complex Lie group SL(2,C) is called null if det B′ = 0 holds on M, where ′ denotes B thederivativewithrespecttoacomplexcoordinatez. Takeanullholomorphicimmersion : M SL(2,C)andlet B → (2.8) Ψ=ψdz, ψ =ψB = −1 ′. B B Since isanullimmersion,Ψisaholomorphicsl(2,C)-valued1-formwith B (2.9) detψ =0 and ψ >0, | | where denotes the matrix norm defined in (A.1) in the Appendix. Conversely, if an sl(2,C|)-·v|alued holomorphic1-form Ψ = ψdz on a simply connected Riemann surface M satisfies(2.9),thesolution ofanordinarydifferentialequation B (2.10) −1d =Ψ, (z )=id 0 B B B isanullholomorphicimmersionintoSL(2,C). Wedefinetheinducedmetricds2 of as B B 1 1 1 1 (2.11) ds2B = Ψ2 = ψ 2 dz 2 = λ2B dz 2 = ∗ , (λB := ψ ), 2| | 2| | | | 2 | | 2B h i | | where , is the canonicalHermitianmetric of SL(2,C)inducedfromthe matrixnorm h i (A.1)intheAppendix.Identifyingthehyperbolic3-space 3withtheset H 3 = aa∗; a SL(2,C) =SL(2,C)/SU(2) (a∗ =ta¯) H { ∈ } asin(A.3)inAppendixA, (2.12) β :=π = ∗: M 3 ◦B BB −→H givesa conformalmeancurvatureoneimmersion(aCMC-1 surface[Br1, UY1]), where π: SL(2,C) 3 = SL(2,C)/SU(2)istheprojection. Theinducedmetricofβ coin- → H cideswithds2, whichisthereasonwhyweaddthecoefficient1/2in(2.11). Since is B B null,wecanwrite 1 g g2 (2.13) Ψ= − ηdz, √2 1 g (cid:18) − (cid:19) wheregandηdzareameromorphicfunctionandaholomorphic1-form,respectively.We call(g,ηdz)theWeierstrassdataof . Thenwecanwrite B 1 (2.14) λB = (1+ g 2)η . √2 | | | | ThemeromorphicfunctiongiscalledthesecondaryGaussmapof ([UY2]). Ifanullcurve inC3 andanullcurve inSL(2,C)areobtainBedbythesameWeier- F B strassdata(g,ηdz),theirinducedmetricscoincide,andthentheyhavethesameintrinsic COMPLETEBOUNDEDNULLCURVES 5 behavior.Inthiscase,wecall thecousinof . TheformsΦandΨin(2.1)and(2.8)are B F relatedas 1 φ φ +iφ (2.15) ψˆ:=φ=(φ ,φ ,φ ) ψ = 3 1 2 , 1 2 3 ←→ √2 φ1 iφ2 φ3 (cid:18) − − (cid:19) inwhich φ = ψ holds.RemarkthattheWeierstrassdata(g,ω)in[UY1]coincideswith | | | | (g,√2ηdz)here. WecallaC3-valuedholomorphic1-formΦ=φdzonM aW-dataif(2.2)holds.IfM issimplyconnected,itprovidesanullcurveinC3by(2.4),whileanullcurveinSL(2,C) by(2.15)and(2.10). 3. PROOFS OF THETHEOREMS 3.1. Correspondence of null curves in C3 and SL(2,C). Firstly, we give a proof of TheoremAintheintroductionusingTheoremC. Itshouldberemarkedthatevenwhena nullcurveinC3 iscompleteandbounded,itscousininSL(2,C)maynotbeboundedin general.SoweconsideranothertransformationtoproveTheoremA. Let (3.1) : (x ,x ,x ) C3; x =0 (y ) SL(2,C); y =0 1 2 3 3 ij 11 T { ∈ 6 }→{ ∈ 6 } 1 1 x +ix (x ,x ,x )= 1 2 , T 1 2 3 x3 (cid:18)x1−ix2 (x1)2+(x2)2+(x3)2(cid:19) whichisbirational,anditcanbeeasilycheckedthat mapsnullcurvesinC3 x =0 3 tonullcurvesinSL(2,C). Themap isessentiallyTthesameasBryant’stran\sf{ormatio}n ofnullcurvesbetweenC3andthecomTplexquadricQ3[Br2]. ProofofTheoremAviaTheoremC. Let : M SL(2,C) be a complete boundednull immersiondefinedona RiemannsurfaceBM. B→y replacing bya (a SL(2,C)), we may assume = 0 without loss of generality, where B= ( B). T∈hen −1 is 11 ij a bounded hoBlomo6rphic null immersion of M into C3. OBn anyBbounded setTin C◦3,Bthe pull-backof canonicalHermitian metric of SL(2,C) by is equivalentto the canonical Hermitian metric of C3 by the following well-known LTemma 3.1. Hence the induced metricds2 of −1 iscompletebecausesoistheinducedmetricds2 of . (cid:3) T−1◦B T ◦B B B Lemma3.1. Letg andg betwoRiemannianmetricsonamanifoldN.Foreachcompact 1 2 subsetK ofN,thereexistconstantsa,b>0suchthatag g bg onK. 1 2 1 ≤ ≤ Remark3.2. BoundednessoftherealpartofanullimmersioninC3 (aminimalsurface) does notimply the boundednessof its imaginarypart (the conjugatesurface) in general. Incontrasttothisfact,aCMC-1surfaceβ isboundedifandonlyifsoisitsholomorphic lift ,because β = ∗ 2 andtraceβ = trace ∗ = 2,where denotes B | | |BB | ≤ |B| BB |B| |·| thematrixnormasinAppendixA. OrthecompactLiegroupSU(2)isconsideredasthe “imaginarypart”in 3 =SL(2,C)/SU(2). H 3.2. ProofofCorollaryB. Next,wegiveaproofofCorollaryBintheintroduction. Let = (F ,F ,F ) : D C3 beanullholomorphicimmersionobtainedbyTheoremA, 1 2 3 1 F → and(g,ηdz)theWeierstrassdataasin(2.6). ThentheprojectionFˆ := (F ,F ): D 1 2 1 C2of isaboundedholomorphicmap.Moreover,itisacompleteimmersion.Infact,→ F 2 dFˆ 4 = 1 g2 2+ 1+g2 2 η 2 =2(1+ g 4)η 2 (1+ g 2)2 η 2 =ds2. F (cid:12)dz (cid:12) | − | | | | | | | | | ≥ | | | | (cid:12) (cid:12) (cid:12) (cid:12) (cid:0) (cid:1) Henc(cid:12)edFˆ(cid:12)/dznevervanishesandFˆ iscomplete. (cid:3) (cid:12) (cid:12) 6 FRANCISCOMARTIN,MASAAKIUMEHARA,ANDKOTAROYAMADA 3.3. ProofofCorollaryD. LetX =(X ,X ,X ): D C3beaboundednullimmer- 1 2 3 1 → sionasinTheoremA. Then f :=Re(iX ,X ,X ): D L3 X 1 2 3 1 −→ providesamaximalsurface(i.e.withzeromeancurvature)withsingularities. SinceX is an immersion, f is considered as a maxface in the sense of [UY3]. Moreover, the lift X metric asin[UY3, Definition2.7]coincideswith ds2 givenin(2.5), whichis complete. X Theninthesenseof[UY3,Definition4.4],f isweaklycomplete. X Similarly,takeanullimmersionY : D SL(2,C)asinTheoremC,andlet 1 → f :=Y 1 0 Y∗: D S3 =SL(2,C)/SU(1,1), Y 0 1 1 −→ 1 (cid:18) − (cid:19) where S3 is the de Sitter 3-space. Then f gives a CMC-1 (i.e., mean curvature one) 1 Y surfacewith singularities. SinceY isan immersion, f is a CMC-1 facein the sense of Y [F]and[FRUYY]. Moreover,sincetheinducedmetricofds2 iscomplete,f isweakly Y Y completeinthesenseof[FRUYY]. (cid:3) 3.4. ProofofTheoremCviaMainLemma. TheproofofTheoremCviaMainLemma follows an standard inductive argument. We construct a suitable sequence X ∞ of nullimmersionsofD intoSL(2,C)asfollows:Takeaninitialnullimmersion{Xn}:nD=0 1 0 1 SL(2,C) such that (D ,ds2 ) is the geodesic disc of radius ρ with center 0, and fix→a 1 X0 0 positiveintegerk 1. Foreachintegern > 0, weapplyourMainLemmainductively 0 ≥ supposingthatXn−1hasbeenalreadyconstructed.Let 1 1 1 ε , s= . ≤ (n+k )2 n+k ≤ 8 0 0 (cid:18) (cid:19) Since2s2+ε<3/(n+k )2,wecanconstructX suchthat 0 n (1) (D ,ds2 )containsageodesicdisccenteredattheoriginandofradius 1 Xn n 1 ρ :=ρ + , n 0 k+k 0 k=1 X (2) theinequality n 3 X 2 τ2 1+ | n| ≤ 0 (k+k )2 k=1(cid:18) 0 (cid:19) Y holdsonD , whereτ isapositiveconstantdependingonlyontheinitialchoice 1 0 ofthenullcurveX , 0 (3) and X convergestoacompletenullimmersionX: D SL(2,C)uniformly n 1 ona{nyco}mpactsetofD . → 1 Asaconsequence,X satisfies ∞ 3 ∞ 2 2 sinh(2π) X 2 τ2 1+ <τ2 1+ =τ2 | | ≤ 0 n=1(cid:18) (k+k0)2(cid:19) 0 n=1 (cid:18)k(cid:19) ! 0 2π Y Y onD .WecanchoosetheinitialdataoftheinitialcurveX suchthatτ isarbitrarilyclose 1 0 0 to√2. Sincek isalsoarbitrary,wecanlet X <τ foranarbitraryτ >√2. (cid:3) 0 | | 4. PROOF OF MAIN LEMMA 4.1. Labyrinth. Toprovethemainlemma,wewillworkonNadirashvili’slabyrinth([N, MN,CR]). WefixthedefinitionsandnotationsontheLabyrinth:LetN bea(sufficiently large)positivenumber.Fork=0,1,2,...,2N2,weset k 1 2 (4.1) r =1 r =1,r =1 ,...,r =1 , k − N3 0 1 − N3 2N2 − N (cid:18) (cid:19) COMPLETEBOUNDEDNULLCURVES 7 andlet (4.2) D = z C; z <r and S =∂D = z C; z =r . rk { ∈ | | k} rk rk { ∈ | | k} Wedefineanannulardomain as A (4.3) :=D D =D D , A 1\ r2N2 1\ 1−N2 and N2−1 N2−1 A:= D D , A:= D D , r2k \ r2k+1 r2k+1 \ r2k+2 k=0 k=0 [ [ N−1 e N−1 L= l , L= l , 2kπ (2k+1)π N N k=0 k=0 [ [ wherel istherayl = reiθ; r 0 . LetΣebeacompactsetdefinedas θ θ { ≥ } 2N2 2N2 Σ:=L L S, S = ∂D = S , ∪ ∪ rj rj j=0 j=0 [ [ anddefineacompactsetΩby e Ω= U (Σ), 1/(4N3) A\ where U (Σ) denotesthe ε-neighborhood(of the Euclidean plane R2 = C) of Σ. Each ε connectedcomponentofΩhaswidth1/(2N3). Foreachnumberj =1,...,2N,weset ω := l connectedcomponentsofΩwhichintersectwithl , j jπ jπ N ∩A ∪ N ̟j :=U(cid:0)1/(4N3)((cid:1)ωj)(cid:0). (cid:1) Thenω ’sarecompactsets. j 4.2. TransformationofHolomorphicdata. Theconstructionofcompleteboundedmin- imalsurfacesinR3providesthefollowingassertion(see[N,MN]): Lemma4.1. LetN( 4)beaninteger,andΦ=φdzaW-dataonD (inthesenseofthe 1 ≥ endofSection2). Thenforeachε > 0andeachintegerj satisfying1 j 2N,there existsanewW-dataΦ˜ =φ˜dzonD satisfyingthefollowingproperties:≤ ≤ 1 (a) OnD ̟ ,itholdsthat 1 j \ ε φ φ˜ < , | − | 2N2 (b) thereexistsaconstantC >0dependingonlyonΦsuchthat φ˜ CN3.5 onω , j | |≥ (φ˜ CN−0.5 on̟j, | |≥ (c) there existsa realunitvectoru = (u ,u ,u ) inR3 suchthat u > 1 2/N 1 2 3 3 | | − and u (φ φ˜)=0 · − holds,where istheinnerproductasin(2.3). · Proof. Let f be the realpartofnullimmersion : D C3 asin (2.4)forz = 0. Φ Φ 1 0 F → We think in fΦ as the minimal immersion j−1 in [N, p. 463]. Then we can construct F anewminimalimmersion imitatingthecorrespondingprocedureasin[N]. However, j F ourconstructionof ismucheasier. Actually,wedonotneedtoadjustthat (̟ )to j j j becontainedinacerFtainconewithsmallcone-anglecenteredatx -axisinR3.F 3 8 FRANCISCOMARTIN,MASAAKIUMEHARA,ANDKOTAROYAMADA Theconditions(a)and(b)followfrom[MN,p.292-3,items(A.1 ),(A.2 ),and(A.3 )]. i i i Thecondition(c)followsfrom[N,(11)]. However,togettheestimate φ˜ CN−0.5 on | | ≥ ̟ ,weneedthepropertythat j 2 √N g √N ≤| |≤ 2 asin[MN,(B.3)orp.293],wheregisthemeromorphicfunctionin(2.6). Forthispurpose, the axis for the Lopez-Rosdeformationcorrespondingto the deformationof Weierstrass data(g,ηdz) (g/h,hηdz)withrespecttoacertainholomorphicfunctionasin[N,(4)] 7→ andin[MN,p.294]mightbeslightlymovedfromthex -axiswiththeangle θ 2/√N, 3 | |≤ thatis 2 cosθ 1 . ≥ − N Finally,weletΦ˜ tobetheWeierstrassdataofour . Thenitsatisfiesthedesiredproper- j ties. F (cid:3) 4.3. AreductionofMainLemma. Inthissubsection,weshallreduceourmainlemma tothefollowing KeyLemma. Let = : D SL(2,C)beanullholomorphicimmersionsatisfying 0 1 (0) = id such thBat (DB,ds2) c→ontains a geodesic disc of radius ρ with center 0. For 1 B B eachpositivenumbersεandswiths < 1/8,thereexistasufficientlylargeintegerN and asequenceofnullimmersions :D SL(2,C) (j =1,...,2N) j 1 B → satisfyingthefollowingproperties: (1) (0)=id, j (2) Bψj ψj−1 <ε/(2N2)holdsonD1 ̟j,where | − | \ Ψ =ψ dz :=( )−1d (j =0,1,...,2N), j j j j B B (3) thereexistsaconstantc>0dependingonlyon suchthat 0 B ψ cN3.5 onω , j j | |≥ (ψj cN−0.5 on̟j, | |≥ (4) D containsaclosedgeodesicdiscD centeredat0withradiusρ+swithrespect 1 g tods2 . Moreover,itholdsthat B 2N b (p) max (z) 1+2s2+ for p ∂D , 2N 0 g |B |≤(cid:18)z∈D1|B |(cid:19)s √N ∈ where∂D istheboundaryofD ,andb>0isaconstantdependingonlyon . g g 0 B Proof. Weconstructthesequenceofnullimmersions ,..., inSL(2,C)inductively. 1 2N B B Assumethat j−1 (j 1)constructedalready. Then j isconstructedasfollows: We B ≥ B set 2 1 ζ := 1 eiπj/N (j =1,2,...,2N). j − N − 4N3 (cid:18) (cid:19) Thenζ ∂̟ ,and ζ attainstheEuclideandistancebetweentheorigin0 D and̟ , j j j 1 j ∈ | | ∈ seeFigure1. Letβj−1 = Bj−1Bj∗−1 : D1 → H3 beaCMC-1surfaceassociatedwithBj−1,andwe set (4.4) H(z):=a j−1(ζj) −1 j−1(z)a∗, and h=HH∗: D1 3. B B →H (cid:8) (cid:9) COMPLETEBOUNDEDNULLCURVES 9 ∂D 1 γ D 1 γ 0 p 0 1−N2 −4N13 ̟ j ζ j ω j p¯ FIGURE 1. Thepointζj andthecurveγ Here a SU(2) is chosen so that the geodesic line passing throughh(0) and h(ζ ) lies j ∈ inx x -planein 3 L4. (Here,weconsider 3ahyperboloidintheMinkowskispace 0 3 H ⊂ H L4,see(A.2)inAppendixA). Weset 1 ψ3 ψ1+iψ2 =ψ :=H−1dH. √2 ψ1 iψ2 ψ3 dz (cid:18) − − (cid:19) Thenonecaneasilycheckthat (4.5) ψj−1 =aψa∗. ApplyingLemma4.1totheW-data(ψ ,ψ ,ψ ),wegetnewaW-dataφ˜=(φ˜ ,φ˜ ,φ˜ ) 1 2 3 1 2 3 satisfying(a)–(c).ThenwedefineanewnullimmersionH :D SL(2,C)suchthat 1 → (4.6) H−1dH =ψ˜= 1 φ˜3 φ˜1+iφ˜2 ,e and H(ζ )=id. dz √2(cid:18)φ˜1−iφ˜2 −φ˜3 (cid:19) j e Afterthat,weeset e ∗ −1 (z):=a H(0) H(z)a. j B ThenBj(0)=id,whichproves(1),andif(cid:8)weeset(cid:9)ψjdez :=Bj−1dBj,itholdsthat (4.7) ψ =aψ˜a∗. j By(a),(b)inLemma4.1and(4.5)and(4.7),wegettheassertions(2)and(3). Inthisway,wecanget inductively. Notethat, by(2)andCorollaryA.6,itholds 2N B that c ε (4.8) distH3 βj(z),βj−1(z) ≤ 2N1 2, on D1\̟j, whereβj = BjBj∗,βj−1(cid:0)= Bj−1Bj∗−1 a(cid:1)nddistH3 standsforthecanonicaldistancefunc- tionof 3,seeA.1inAppendixA. Here,theconstantc dependsonlyon . Throughout 1 0 H B thisproof,weshalldenoteby c ,c ,... 1 2 constants which depend only on . The properties(2) and (3) yield that D contains a 0 1 B closedgeodesicdisc D ofradiusρ+scenteredat0with respecttothe inducedmetric g ds2 by (see[N,p.463]).Letp ∂D andwewillshow(4)inthestatementofthe B 2N g 2N B ∈ Lemma. Ifp ̟ forallj = 1,...,2N,theinequalityiseasytoshowusing(4.8)and j 6∈ LemmaA.2inAppendixA,see[N,MN]. 10 FRANCISCOMARTIN,MASAAKIUMEHARA,ANDKOTAROYAMADA β (p) j Πj βj(ζj) q 1 0 o = 0 1 (cid:18) (cid:19) FIGURE 2. theplaneΠj Otherwise,weassumep ̟ forsomej. Letγ betheds2 -geodesicjoining0and j 0 B ∈ 2N p,andtakep¯ γ ∂̟ suchthatthegeodesicjoiningp¯andpliesin̟ ,seeFigure1. 0 j j ∈ ∩ Thentheds2 -distanceofpandp¯satisfies B 2N c 2 dist (p¯,p) s+ , ds2B2N ≤ √N wherec isaconstantdependingonlyon (see[MN,p.296]).Thus,bytakingasuitable 2 0 B pathγ(asinFigure1)joiningζ andp¯inthecomplementof̟ ,wehave j j c (4.9) dist (ζ ,p) s+ 3 , ds2B2N j ≤ √N sincedist (ζ ,p¯)isoforder1/N2. ds2B2N j LetΠ bethetotallygeodesicplanein 3 passingthroughβ (ζ )whichisperpendic- j j j H ulartothegeodesicjoiningoandβ (ζ ),whereo 3 isthepointcorrespondingtothe j j ∈ H identitymatrixid(asin(A.2)inAppendixA). Letq ( Π )bethefootofperpendicular j ∈ from β (p) to the plane Π , see Figure 2. Then dist q,β (p) gives the distance of j j H3 j β (p)andtheplaneΠ ,and(4)isobtainedasaconclusionofthefollowingLemma: j j (cid:0) (cid:1) Lemma 4.2. Under the situations above, namely, for p ∂D ̟ and for q Π g j j ∈ ∩ ∈ satisfying dist (β (p),q)=dist (β (p),Π ), H3 j H3 j j itholdsthat c dist β (p),q 14s2+ 4 , H3 j ≤ √N wherec isaconstantdependingo(cid:0)nlyon (cid:1). 4 0 B Weshallprovethislemmalater,andnowfinishtheproofofKeyLemma: ProofofKeyLemma,continued. Assume Lemma 4.2 is true. By (4.8) and Lemma A.2, wehave c ε (ζ )2 =2cosh dist o,β (ζ ) 2cosh dist o,β (ζ ) + 1 |Bj j | H3 j j ≤ H3 0 j N max (cid:0)β (z) 2(cid:0) 1+ c5(cid:1)(cid:1), o:=(cid:16) 1 0(cid:0) 3 (cid:1), (cid:17) ≤(cid:0)z∈D1| 0 |(cid:1) (cid:16) N(cid:17) (cid:18) (cid:18)0 1(cid:19)∈H (cid:19)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.