ebook img

A comprehensive range of X-ray ionized reflection models PDF

0.28 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A comprehensive range of X-ray ionized reflection models

Mon.Not.R.Astron.Soc.000,1–6(2003) Printed2February2008 (MNLATEXstylefilev2.2) A comprehensive range of X-ray ionized reflection models R. R. Ross1⋆ and A. C. Fabian2 1PhysicsDepartment,CollegeoftheHolyCross,Worcester,MA01610,USA 2InstituteofAstronomy,MadingleyRoad,CambridgeCB30HA 2February2008 5 0 ABSTRACT 0 X-ray ionized reflection occurs when a surface is irradiated with X-rays so intense that its 2 ionizationstateisdeterminedbytheionizationparameterξ ∝ F/n,whereF istheincident n fluxandnthegasdensity.Itoccursinaccretion,ontocompactobjectsincludingblackholes a inbothactivegalaxiesandstellar-massbinaries,andpossiblyingamma-raybursts.Compu- J tationofmodelreflectionspectraisoftentime-consuming.Herewepresenttheresultsfrom 7 a comprehensivegrid of models computedwith our code, which has now been extendedto include what we consider to be all energetically-importantionization states and transitions. 1 Thisgridisbeingmadeavailableasanionized-reflectionmodel,REFLION,forXSPEC. v 6 Keywords: X-rays:general–accretion,accretiondiscs–galaxies:active–radiativetransfer 1 –line:formation 1 1 0 5 0 1 INTRODUCTION thegeometryoftheillumination,theinfluenceofmagneticfields, / etc.Furthermore,Ballantyneetal.(2001)foundthatmodelsforre- h The process of backscattering and fluorescence of X-rays from flectionbyatmospheresinhydrostaticequilibriumcouldbefitby p cosmic matter known as X-ray reflection is commonly observed dilutedversionsofconstant-densityreflectionmodels. - throughout astronomy. We are concerned here with the situation o Wehavenowassembledanextendedgridofmodelsforwhich r wheretheX-rayirradiationissointensethatitdeterminestheion- theionizationparameter,irradiatingspectralindexandironabun- t izationstateofthematerial.ThisoccursinaccretingX-raysources s dancearefreeparameters.Atthesametimetheoriginalcodehas a suchasGalacticBlackHoleCandidates(BHC)andActiveGalac- beenexpandedtoincludefurtherionizationspecies.Allabundant : ticNuclei(AGN),andmayalsoberelevanttoGamma-RayBursts v speciesandtheirimportanttransitionsarenowincluded.Thepur- (GRB). i pose of this paper is to present example spectra from across this X The irradiated gas is Compton thick, which requires that grid which can be used as a guide to the interpretation of AGN, r Comptonization of the radiation as well as the necessary atomic BHCandGRBX-rayspectra. a physicsbedealtwith.Resultsofsuchcomputationshavebeenpub- lishedoverthelasttenyears,firstforconstant-densityatmospheres (Ross & Fabian 1993; Z˙ycki et al. 1994; Ross, Fabian & Young 1999)andmorerecentlyfordensitystructuresinhydrostaticequi- 2 METHOD libium(Nayakshin,Kazanas&Kallman2000;Ballantyne,Ross& 2.1 RadiativeTransfer Fabian2001;Ro´z˙an´skaetal.2002;Maucheetal.2004).Reason- ableagreementisfoundbetweenmostoftheseresults(Pe´quignot Our calculations extendand improve onthe modelsdiscussed by etal.2002). Ross, Fabian & Young (1999). Now the illuminating radiation is Most methods are computationally very timeconsuming, so assumedtohaveacutoffpower-lawspectrum, moneltyholidmriutendsrreeglaiotinvseloyfrpaapriadmlye,toernstphaeceothhaevrehabneden, wexhpelnortehde.iOlluur- FE =AE−Γ+1exp(−E/Ec), (1) minatedgasisassumedtohaveconstantdensity.Suchmodelsare that extends to higher photon energies. Different values of the still useful for several reasons. The overall geometry is still not photon index Γ are treated, while the cutoff energy is fixed at understood for many sources. Evenwhen asimpleaccretion-disc Ec = 300keV. The amplitude A is chosen so that the total il- structure is assumed, detailed calculations of hydrostatic equilib- luminatingflux,Ftot = FEdE,correspondstoadesiredvalue R riumaresubject touncertainties inthetotal thickness of thedisc oftheionizationparameter, (andhencetheverticalcomponentofthelocalgravitationalfield), the boundary condition (either pressure or height) at the base of ξ= 4πFtot. (2) theilluminatedlayer,theexternalpressureexertedbythecorona, nH Theilluminationisincidentontheupper surfaceofaplane- parallelslabrepresentingthetoplayerofanopticallythickmedium ⋆ [email protected] suchasan accretiondisc. Theslabhas hydrogen number density (cid:13)c 2003RAS 2 R.R. Ross&A.C. Fabian nH = 1015cm−3 and Thomson depth τT > 5. (Larger Thom- (1974)isusedtocalculatetheresultingeffectontheionizationbal- sondepthsaretreatedforlargervaluesofξ,sincetheillumination ance. can penetrate to greater depths when the gas is more highly ion- Forallelementsexceptiron,totalrecombinationratesasfunc- ized.)Nonetfluxisallowedtoentertheslabfrombelow,sothat tions of density and temperature are derived from the tables of theemergent radiationisdueentirelytoreprocessed illumination Summers (1974). These rates include two effects that are impor- (“reflection”).Additionalradiationfrombeneaththesurfacelayer tantathighdensities:theincreaseintherecombinationrateatlow couldbeapproximatedbyaddingasoftblackbodyspectrumtothe temperatures due to three-body recombination and the reduction calculatedreflectionspectrum(seeSection4). inthedielectronicrecombinationrateathightemperaturesdueto AsdescribedbyRoss&Fabian(1993),thepenetrationofthe collisionalionizationofthehighlyexcitedstatesthatfollowradia- illuminatingradiationistreatedseparatelyfromthetransferofthe tionlessrecombination(Burgess&Summers1969).Atlowdensi- diffuseradiationproducedviascatteringoremissionwithinthegas. ties,theseratesareinreasonableagreementwithmoremodernfits Inordertoextendthetreatmentofthediffuseradiationtophoton forcombinedradiativeanddielectronicrecombination(Arnaud& energies above 100 keV, Compton scattering is treated using the Rothenflug1985).Foriron,ratesforradiativeanddielectronicre- Fokker-PlanckequationofCooper(1971): combinationarecalculatedusingthefitsofArnaud&Rothenflug (1985) and Verner & Ferland (1996). Three-body recombination ∂n = neσT 1 ∂ α(E,θ)E4 n+θ∂n , (3) ofironisneglected, sinceitisunimportant atthedensitiesunder (cid:16)∂t(cid:17)FP mec E2∂E h (cid:16) ∂E(cid:17)i consideration (Jacobsetal.1977). Ratesforradiativerecombina- where n is the photon occupation number, E is the photon en- tiondirectlytogroundlevelsarecalculatedusingtheMilnerelation ergy,neisthefree-electronnumberdensity,andθ=kT.Herethe (e.g.,Bates&Dalgarno1962). Fokker-PlanckequationofKompaneets(1957)hasbeenmodified The most important emission lines for each ion are treated bytheterm inthecalculations. Sincetheilluminatedatmosphereisthickand dense,resonancelinesareassumedtobeopticallythick(“caseB”), 1+β(θ)/(1+0.02E) α(E,θ)= 1+9×10−3E+4.2×10−6E2 , (4) greatlyreducingthenumberofimportantlines.Atotalof274mul- tipletsareincluded;individual lineswithinamultipletarenotre- withEinkeVandwith solved. Line energies and oscillator strengths for resonance lines 5 θ 15 θ 2 θ are taken from the results of the Opacity Project (Verner, Verner β(θ)= + 1− . (5) 2mec2 8 (cid:16)mec2(cid:17) (cid:16) mec2(cid:17) & Ferland 1996). Excitation and line energies of nonresonance lines,aswell ascollisionstrengths for alllines, arederived from Equation(3)isapplicableforE . 1MeV.Thediffuseradiation theCHIANTIdatabase(Dereetal.2001).Parametervaluesmiss- field is taken to satisfy the steady-state Fokker-Planck/diffusion ing from these databases are taken from Kato (1976), Raymond equation, & Smith (1977), Gaetz & Salpeter (1983), or Landini & Mon- (cid:16)∂∂nt(cid:17) + ∂∂z (cid:16)3cκ∂∂nz(cid:17)+ j8EπhE3c33 −cκAn≡0, (6) tshigenroercioFmobsisnia(t1io9n90li)n,eassonfeFceesXsaXrVy.ITanhdeFireonXXKVα(nlienaers7t.r0eaatnedd6ar.7e FP keV, respectively) and the fluorescence lines of FeVI–XVI (near where z is the vertical height within the slab, jE is the spectral 6.4keV).KαfluorescenceofFeXVII–XXIIisassumedtobesup- emissivity, κ = κA +κKN isthetotalopacity (per volume),κA pressedbyautoionization(Augereffect)duringresonancetrapping is the absorption opacity, and κKN is the Klein-Nishina opacity (Ross, Fabian & Brandt 1996). Recombinations to excited levels f1o0r−C3o<mpEton<sc1at0t3erkinegV..WTeheapepnleyrgeyqureastioolnuti(o6n) tios Era/d∆iatEion=wi5t0h ofFeXVII–XXIIareassumedtoresultultimatelyin3s → 2pline emission(Liedahletal.1990). throughout the0.1–10keVspectralrange(exceptforaresolution Resonance lines require special attention. Resonance-line of 70around theironKαlines),withsomewhat lower resolution photons can avoid destruction during resonance trapping by two outsidethatrange. mechanisms: Compton scattering out of the narrow line core be- tween resonance scatterings and reemission in the far line wings during resonance scattering. The fraction avoiding destruction is 2.2 AtomicData takentobe Astheradiationfieldisrelaxedtoasteadystate,thelocaltemper- atureandfractionalionizationofthegasarefoundbysolvingthe f = (κT/κ)Pcont+Pesc. (7) equations of thermal and ionization equilibrium, as described by Pcont+Pcoll+Pesc Ross&Fabian(1993).Forthisnon-LTEcalculation,wehaveex- Here κT is the Thomson opacity, κ is the total continuum opac- tendedthenumber ofelementsandtherangeofionstreated,and ityat thelineenergy, Pcont istheprobabilityper resonance scat- wehaveupdatedmuchoftheatomicdataemployed.Inadditionto teringthatthephotonundergoesacontinuumprocess(absorption fully-ionizedspecies,thefollowingionsareincludedinthecalcu- orComptonscattering),andP istheprobabilityperresonance coll lations:CIII–VI,NIII–VII,OIII–VIII,NeIII–X,MgIII–XII,SiIV– scatteringthatcollisionaldeexcitationoccursinsteadofreemission XIV,SIV–XVI,andFeVI–XXVI. (Hummer1968).TheescapeprobabilityPescduetoreemissionin Photoionization cross sections for all subshells of the ions thefarlinewings(Hummer&Rybicki1971)iscalculatedusingthe treatedare calculated fromthefitsof Verner &Yakovlev (1995). approximationfortheK2functiongivenbyHollenbach&McKee Ratesfordirectcollisionalionizationandexcitationautoionization (1979). A Doppler line profile is assumed for all resonance lines aretakenfromArnaud &Rothenflug(1985) and Arnaud&Ray- excepttheFeKαline,whereaLorentzprofileisassumeddueto mond(1992).Forcarbonthroughsulfur,Augerionizationistreated theimportanceofthedampingwings.Linephotonsthatavoidde- asdescribedbyWeisheit&Dalgarno(1972).Foriron,weemploy structionduringresonancetrappingareaddedtothecontinuumby theprobabilitiesformultipleAugerionizationcalculatedbyKaas- meansofthelocalemissivity. tra&Mewe(1993),andageneralizationofthemethodofWeisheit Elements lighter than iron are assumed to have solar abun- (cid:13)c 2003RAS,MNRAS000,1–6 Reflection Models 3 Figure1.Structureasafunction ofThomsondepthfortheisolatedslab illuminatedononeside.Theupperpanelshowsthetemperature,whilethe middle and bottom panels show the ion fractions of oxygen and silicon, respectively. dances (Morrison & McCammon 1983), while the abundance of Figure2.Spectrafortheisolatedslabilluminatedononeside.Thedashed ironissettoafactorAFe timesitssolarvalue.Modelsaregener- curveistheilluminatingspectrum,thesolidcurveisthe“reflected”spec- atedwithunderabundancesaswellasoverabundancesofiron.On trumemergingfromtheilluminatedside,andthedottedcurveisthe“trans- theonehandtheX-rayspectraofsomeSeyfertgalaxiesappearto mitted” spectrum emerging from the far side. The lower panel shows a requirehighabundanceofiron,forexampleMCG–6-30-15(Fabian close-up ofaportion ofthe broader spectrum shownintheupper panel. etal.2002)and1H0707-49(Bolleretal.2002),andShemmeret Thespectralresolutionis30. al. (2004) have reported a strong correlation between metallicity and accretion rateina sampleof luminous quasars. Onthe other hand, Nomoto et al. (1997) have found that Type II supernovae agreement because ourcalculationsassumethat heliumisalways producethefollowingaverageabundancesrelativetosolarvalues: fully ionized. Normally our interest is in reflection by a highly AC = 0.2, AN = 0.01, AO = 1.3, ANe = 0.9, AMg = 1.2, optically-thick medium. Inorder for all of the incident energy to ASi = 1.1, AS = 0.7, and AFe = 0.35. In that case, oxygen, escapebackouttheilluminatedsurface,thetotalradiativeenergy neon,magnesiumandsiliconarenearsolarabundances,whilethe densityincreaseswithThomsondepthtosuchadegreethattheas- abundanceofironismarkedlyreduced. sumptionthatheliumisfullyionizedshouldbesatisfactory.When radiationisfreetoleavethefarsurfaceofamarginallythickslab, however,heliumneednotbefullyionizedthroughout.Dumontet 2.3 TestCase:anIsolatedSlab al. (2003) found a large fraction of He+ ions at depths τT > 3. RecentlyDumontetal.(2003)havecriticizedcalculations,suchas Ourcalculationoftheisolatedslabservesmainlyasatestforthe oursandthoseofNayakshinetal.(2000),thatemploytheescape Lyman-α lines of hydrogen-like ions, which are produced in the probabilityintreatingemissionlines. Dumontetal.usean“accel- hotterlayersnearertheilluminatedsurface. eratedlambdaiteration”methodthatincludesadetailedtreatment Thebiggestchangerequiredforthismodelisintheboundary ofradiativetransferwithinthespectrallinesthemselves.Theypoint conditionatthefarsideoftheslab.Diffuseradiationisallowedto out that their code has the drawback of being time-consuming, emergethere,withtheescapingfluxcalculatedinthesamewayas whichprecludesitfromeasilygeneratinglargegridsofmodelsfor attheilluminatedsurface(seeFoster,Ross&Fabian1986).Other fittingdata.Inparticular,theyhaveappliedtheirmethodtoaniso- changes must also be made to the method described previously. latedslabthatisilluminatedononeside.ThetotalThomsondepth ThegasdensityisreducedtonH = 1012cm−3.Theilluminating of the slab is τT = 4, and the illuminating flux corresponds to spectrumisasimplepowerlawwithphotonindexΓ = 2extend- ξ = 103 ergcms−1.Asatestofourmethod,wehaveperformed ingfrom0.1eVto100keV, andtheenergyresolution isfixedat ourowncomputationforthissituation.Wecannotexpectcomplete E/∆E =30.ThemetalabundancesaresettothevaluesofAllen (cid:13)c 2003RAS,MNRAS000,1–6 4 R.R. Ross&A.C. Fabian (1973), which differ slightly from those of Morrison & McCam- mon(1983). Figure1showsthetemperaturestructureandtheionfractions foroxygen andsiliconthatwecalculatefortheisolatedslab.For τT . 2.5, our results are in good agreement with those of Du- mont et al.(2003). Thedifferences atgreater Thomson depth are presumablyduetothelackofHe+inourmodel. Thereflectedspectrumthatwecalculatefortheisolatedslab isshowninFigure2.Dumont etal.(2003) concluded that useof the escape probability must result in a drastic overestimation of thestrengthoftheLyman-αlinesofhydrogen-likeions.However, wefindtheLyman-αlinesofCVI(0.37keV),OVIII(0.65keV), MgXII(1.5keV),SiXIV(2.0keV),andSXVI(2.6keV)tobein excellentagreementwiththeirresults. Inparticular,theOVIIIline hasanequivalentwidthof27eVwithrespecttothetotal(incident plus reflected) continuum, compared to their value of 28 eV. For theSiXIVline,whichiscomplicatedbyasteeperunderlyingcon- Figure 3. Reflected spectra for three values of the ionization parameter, tinuumandblendingwiththeHe-likeline,weestimateanEWof withξ = 102 (bottomcurve),103,and104 ergcms−1 (topcurve).The 14eVcomparedtotheirvalueof9.5eV.Inourcalculations,Comp- incidentspectrumhasΓ=2.0,andironhassolarabundance. tonscatteringofresonance-linephotonsoutofthenarrowlinecore turnsouttobemuchmoreimportantthanreemissioninthefarline wings.Thatis,thefirsttermofthenumeratorinequation(7)com- pletelydominatesoverthesecondterm. TheFeKαlineissomewhatstrongerinourcalculation.Since it is dominated by the Fe XXV intercombination line (6.7 keV), however,thisisprobablyduetodifferentapproximationsintreating theatomicphysics.Curiously,wefindtheLyman-αlineofNVII (0.50keV)tobeweakerthanfoundbyDumontetal.(2003).Dif- ferencescanbeseeninotheremissionlines,buttheseareproduced deeper within the slab, where He+ could be a factor. Fig. 2 also shows the calculated spectrum emerging from the far side of the slab.BecauseofthelackofHe+,theEUVportionofthetransmit- tedspectrumcutsoffatahigherenergythanfoundbyDumontet al.(2003). Overall, our method appears to give reasonably accurate re- sults,withcomputing timesshortenough toallowtheproduction of a large grid of reflection models for fitting to observed X-ray spectra. Figure4.Reflectedspectraforfivevaluesofthephotonindex,withΓ = 1.2(topcurve),1.6,2.0,2.4,and2.8(bottomcurve).Theincidentspec- trumhasξ = 103 ergcms−1,andironhassolarabundance.Successive spectrahavebeenoffsetbyfactorsoffiveforclearerpresentation. 3 RESULTS For an optically-thick medium, we have calculated model reflec- tionspectracoveringarangeofvaluesfortheionizationparameter allatopashallowabsorptiontrough.TheNVIIKαline,atanen- (ξ = 30,100,300,1000,3000,and10000ergcms−1),thepho- ergy(0.50 keV) just above theCVI K-edge, isvery weak. When tonindex(Γ = 1.0to3.0instepsof0.2),andtheironabundance ξ is reduced to 102 ergcms−1, there is very little ionization for (AFe = 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, and 10.0) relative toitssolar τT & 21. Thenarrow FeKα line near 6.4 keV is due to fluores- value.Theresultisagridof462reflectionmodels. cence, and the spectral region below 3 keV exhibits a myriad of Of course, the ionization parameter has a marked effect on emissionfeaturesatopadeepabsorptiontrough. emissionandabsorptionfeaturesinthereflectedspectrum.Figure3 Inadditiontoaffectingtheoverallslopeofthereflectedspec- showsreflectedspectraforthreedifferentvaluesofξ.Ineachcase, trum,thephotonindexΓalsoaffectstheemissionandabsorption theincidentspectrumhasΓ = 2.0,andironhassolarabundance features, since harder illuminating spectra have greater ionizing (AFe = 1). For ξ = 104 ergcms−1, the surface layer is highly power.Figure4showsreflectedspectraforfivedifferentvaluesof ionized,withFeXXV–XXVIIdominatingforτT .7.Theonlyim- Γ.Ineachcase,theincidentspectrumhasξ=103ergcms−1,and portantemissionfeatureisthehighlyCompton-broadenedironKα ironhassolarabundance(AFe =1). ForΓ=1.2or1.6,theillu- linepeaking at7.0keV.Forξ = 103 ergcms−1,theilluminated minatedgasismorehighlyionizedthanforΓ=2.0.TheironKα gasisnotashighlyionized.FeXXVdominatesforτT .1,andthe featureisabroadercombinationofFeXXVandFeXXVIlines,and lighterelementsarenolongerfullyionizedbelowthat.Thestrong thelinesofthelighterelementsareweaker.WithΓ=2.4or2.8,on iron Kα emission is dominated by the FeXXV intercombination theotherhand,theilluminatedgasislesshighlyionized.FeXVIII– line, and Compton broadening is still important. The spectral re- XXII dominate at the outer surface instead of Fe XXV, so the Fe gionbetween0.3and3keVshowsKαlinesofCVI,OVIII,NeX, Kα line is much weaker, while the Fe Lα lines are stronger and MgXII,SiXIII–XIV,andSXV–XVI,aswellasafewFeLαlines, morenumerous.TheKαlinesofthelighterelementsarestronger (cid:13)c 2003RAS,MNRAS000,1–6 Reflection Models 5 Figure 5. Reflected spectra forthree values ofthe iron abundance, with Figure6.Emergentspectraforpurereflection(bottomcurve)andwhena AFe = 0.2(topcurve), 1,and5(bottom curve)times solarabundance. softblackbodyspectrum(kTbb=0.010keV)entersthesurfacelayerfrom Theincidentspectrumhasξ = 103ergcms−1andΓ = 2.0.Successive below.Resultsareshownwiththeblackbodyfluxequaltotheilluminating spectrahavebeenoffsetbyfactorsoffiveforclearerpresentation. flux(middle curve) and ten times greater than the illuminating flux(top curve).Theilluminatingspectrumhasξ = 103ergcms−1andΓ= 2.0, andironhassolarabundance.Successivespectrahavebeenoffsetbyfactors (asisthecontinuumabsorption),withHe-likeexceedingH-likefor ofthreeforclearerpresentation. Mg,SiandS.Theoxygenlinesareespeciallyenhancedbyasoft illuminatingspectrum. TheeffectsofalteringtheabundanceofironareshowninFig- keVenteringtheilluminatedlayerfrombelow.Modelsareshown ure 5. Again, the illuminating radiation has ξ = 103 ergcms−1 withblackbodyfluxesequaltotheilluminatingfluxandtentimes and Γ = 2.0. With iron reduced to 0.2 times its solar abun- greater thantheilluminatingflux.Inbothcases, moreEUVradi- dance,boththeKαemissionline(6.7keV)andtheK-absorption ationemergesthanforpurereflection,asexpected, but theX-ray feature (∼ 10keV) are reduced compared to the reflected spec- spectrum is essentially unchanged. Furthermore, accretion power trumwithsolarabundance. Also,lessFeLαemissionisblended liberatedinanaccretiondisccorona (producing theillumination) with the NeX Kα line (1.0 keV). With iron at five times solar shouldreducetheamountofpowerliberatedlocallywithinthedisc, abundance,theincreasedironabsorptionlowersthecontinuumfor sothe“bigbluebump”maynotbeproducedinthesameregionsof 1.E .40keV,whiletheironKα(6.7keV),Lα(∼1keV),and thediscastheX-rayreflection.Forthesereasons,wehavechosen 2p → 2s (∼0.1keV) emission linesare enhanced. At the same tocalculatereflectionspectraonly. time,theKαlinesofMg,Si,andSareweakened,partlybecause A signature of ionized reflection is the soft excess emission theseelementsdonotremainhighlyionizedtoasgreatadepth. whichoccursinthe0.2-2keVbandduetolinesandbremsstrahlung Thegridof462modelsisbeingmadeavailableasanionized- fromthehotsurfacelayers.Itgivesabumpintherelativistically- reflectionmodel,calledREFLION,foruseintheXSPECdata-fitting blurredspectrumwhich,whenfoldedthoughanXMM-Newtonpn routine(Arnaud1996). response matrix in order to simulate real data, is well-fittedby a blackbodyoftemperature150eV(residualslessthan10percent). This may be relevant to the 100-200 eV temperature component foundintheX-rayspectraofmanylow-redshiftPGquasars(Gier- 4 DISCUSSION linski&Done2004;Porquetetal.2004)whichthereforemaybe Thetreatment of Ross& Fabian(1993) has been extended toin- duetoionizedreflection. cludeallcommonlyimportantionizationstatesandtransitions.The Wehavechecked whetherthemanyemissionfeaturesinthe resulting spectral grids should be useful for interpreting spectra reflectionspectrumarelikelytobereadilyobservable.Ifthereislit- fromAGN,BHCandGRB.Majorsignaturesofmoderatelyionized tletoblurthespectrumasaresultofeitherinstrumentalresolution reflectionareaCompton hump atabout 30keV, astrongionized orshearwithintheionizedreflector,thenthelineswillbeobserv- ironlineat6.7keV,multipleemissionlinesontopofasoftcontin- able.However,whenthereisstrongshear,asintheinnerpartsofan uumbetween0.3and3keVandafurtherEUVhumpofemission accretiondisc,thenthesitutaionismuchmoredifficult.Weshow peaking at about 60 eV. The iron abundance has a significant ef- inFigure7theeffectofrelativisticblurringinanaccretiondiscin- fectontheshapeofthereflectedcontinuumbetweenabout3and clinedat30degwheretheemissionhasanemissivityindexof3and 30keV. extendsfrom3to100gravitationalradii.Hereξ=103ergcms−1, The spectra that we have calculated result entirely from re- Γ=2.0,andAFe=1.Thebroad(helium-like)iron-Klineisvery flection(reprocessedillumination).Asignificantfractionofthein- clear,asisarelativelyweakbroadoxygenline.Aweakfeatureof cident X-ray energy emerges as softer radiation (asdiscussed re- Fe-LandNewithaboutthesameequivalentwidthasO(∼120eV centlybyMadejandRo´z˙an´ska2004,forexample).Theaccretion relativetothelocalreflection‘continuum’alone),togetherwithSi discbeneaththeilluminatedsurfacelayercanbeexpectedtopro- andSarejustdiscernibleinthisreflection-onlyspectrum.Figure8 duce additional soft radiation (the “big blue bump”) that can en- demonstrateshowextremerelativisticblurringandchangesiniron hancetheEUVhump.Figure6showswhathappenswhenthecal- abundanceaffectobservationsofiron-Kfeatures.Alowironabun- culations include asoft blackbody spectrum withkT = 0.010 dance,perhapsduetoSNIIenrichment,producesasmalledgein bb (cid:13)c 2003RAS,MNRAS000,1–6 6 R.R. Ross&A.C. Fabian Bates D.R., Dalgarno A., 1962, in Atomic and Molecular Pro- cesses,ed.D.R.Bates.AcademicPress,NewYork,p.245 BollerTh.etal.,2002,MNRAS,329,L1 BurgessA.,SummersH.P.,1969,ApJ,157,1007 CooperG.,1971,Phys.Rev.D,3,2312 DereK.P.,LandiE.,YoungP.R.,DelZannaG.,2001,ApJS,134, 331 Dumont A.-M.,CollinS.,PaletouF.,Coupe´ S.,Godet O.,Pelat D.,2003,A&A,407,13 FabianA.C.etal.,2002,MNRAS,335,L1 FosterA.J.,RossR.R.,FabianA.C.,1986,MNRAS,221,409 GaetzT.J.,SalpeterE.E.,1983,ApJS,52,155 GierlinskiM.,DoneC.,2004,MNRAS,349,L7 HollenbachD.,McKeeC.F.,1979,ApJS,41,555 HummerD.G.,1968,MNRAS,138,73 Figure 7. Effect of relativistic blurring on the emergent spectrum. The HummerD.G.,RybickiG.,1971,ARA&A,9,237 modelwithξ = 103 ergcms−1,Γ = 2.0,andAFe = 1(centrallinein JacobsV.L.,DavisJ.,KeppleP.C.,BlahaM.,1977,ApJ,211,605 Fig.3,nowdashed)hasbeenblurredasifobservedfromadiscwithemis- KaastraJ.S.,MeweR.,1993,A&AS,97,443 sivityindex3extendingfrom3to100gravitationalradiiaroundamaximal KatoT.,1976,ApJS,30,397 Kerrblackhole,viewedataninclinationangleof30deg(solidline). KompaneetsA.S.,1957,SovietPhys.JETP,4,730 LandiniM.,MonsignoriFossiB.C.,1990,A&AS,82,229 LiedahlD.A.,KahnS.M.,OsterheldA.L.,GoldsteinW.H.,1990, ApJ,350,L37 MadejJ.,Ro´z˙an´skaA.,2004,MNRAS,347,1266 Mauche C.W., Liedahl D.A., Mathiesen B.F., Jimenez-Garate M.A.,RaymondJ.C.,2004,ApJ,inpress(astro-ph/0401328) MorrisonR.,McCammonD.,1983,ApJ,270,119 NayakshinS.,KazanasD.,KallmanT.R.,2000,ApJ,537,833 Nomoto K., Hashimoto M., Tsujimoto T., Thielemann F.-K., KishimotoN.,KuboY.,NakasatoN.,1997, Nucl.Phys.A,616, 79 Pe´quignotD.etal.,2002,inFerlandG.J.,SavinD.W.,eds,ASP Conf. Ser. Vol. 247, Spectroscopic Challenges of Photoionized Plasmas.Astron.Soc.Pac.,SanFrancisco,p.533 PorquetD.,ReevesJ.N.,O’BrienP.,BrinkmannW.,2004,A&A, 422,85 RaymondJ.C.,SmithB.W.,1977,ApJS,35,419 Figure8.Effectsofironabundanceonrelativistic-blurredspectra.Models forξ=30ergcms−1andΓ=2.0withAFe=0.3(solid)andAFe=3 ShemmerO.,NetzerH.,MaiolinoR.,OlivaE.,CroomS.,Corbett (dashed)havebeenblurredasifobservedfromadiscwithemissivityindex E.,DiFabrizioL.,2004,ApJinpress(astro-ph/0406559) 3extendingfrom2to100gravitationalradiiaroundamaximalKerrblack RossR.R.,1979,ApJ,233,334 hole,viewedataninclinationangleof30deg. RossR.R.,FabianA.C.,1993,MNRAS,261,74 RossR.R.,FabianA.C.,BrandtW.N.,1996,MNRAS,278,1082 RossR.R.,FabianA.C.,YoungA.J.,1999,MNRAS,306,461 thespectrum,whereasahighironabundance,perhapsduetoSNIa Ro´z˙an´ska A., Dumont A.-M., Czerny B., Collin S., 2002, MN- enrichment,producesanapparentlargeedge. RAS,332,799 SummersH.P.,1974,AppletonLaboratory,InternalMemo367 VernerD.A.,FerlandG.J.,1996,ApJS,103,467 5 ACKNOWLEDGEMENTS VernerD.A.,VernerE.M.,FerlandG.J.,1996,AtomicDataNucl. DataTables,64,1 RRRandACFthanktheCollegeoftheHolyCrossandtheRoyal VernerD.A.,YakovlevD.G.,1995,A&AS,109,125 Society,respectively,forsupport. WeisheitJ.C.,1974,ApJ,190,735 WeisheitJ.C.,DalgarnoA.,1972,Astrophys.Lett.,12,103 Z˙yckiP.T.,KrolikJ.H.,ZdziarskiA.A.,KallmanT.R.,1994,ApJ, REFERENCES 437,597 AllenC.W.,1973,AstrophysicalQuantities.AthlonePress,Lon- don ThispaperhasbeentypesetfromaTEX/LATEXfilepreparedbythe Arnaud K.A., 1996, in Jacoby G.H., Barnes J., eds, ASP Conf. author. Ser.Vol.101,AstronomicalDataAnalysisSoftwareandSystems V.Astron.Soc.Pac.,SanFrancisco,p.17 ArnaudM.,RaymondJ.,1992,ApJ,398,394 ArnaudM.,RothenflugR.,1985,A&AS,60,425 BallantyneD.R.,RossR.R.,FabianA.C.,2001,MNRAS,327,10 (cid:13)c 2003RAS,MNRAS000,1–6

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.