Mon.Not.R.Astron.Soc.000,1–6(2003) Printed2February2008 (MNLATEXstylefilev2.2) A comprehensive range of X-ray ionized reflection models R. R. Ross1⋆ and A. C. Fabian2 1PhysicsDepartment,CollegeoftheHolyCross,Worcester,MA01610,USA 2InstituteofAstronomy,MadingleyRoad,CambridgeCB30HA 2February2008 5 0 ABSTRACT 0 X-ray ionized reflection occurs when a surface is irradiated with X-rays so intense that its 2 ionizationstateisdeterminedbytheionizationparameterξ ∝ F/n,whereF istheincident n fluxandnthegasdensity.Itoccursinaccretion,ontocompactobjectsincludingblackholes a inbothactivegalaxiesandstellar-massbinaries,andpossiblyingamma-raybursts.Compu- J tationofmodelreflectionspectraisoftentime-consuming.Herewepresenttheresultsfrom 7 a comprehensivegrid of models computedwith our code, which has now been extendedto include what we consider to be all energetically-importantionization states and transitions. 1 Thisgridisbeingmadeavailableasanionized-reflectionmodel,REFLION,forXSPEC. v 6 Keywords: X-rays:general–accretion,accretiondiscs–galaxies:active–radiativetransfer 1 –line:formation 1 1 0 5 0 1 INTRODUCTION thegeometryoftheillumination,theinfluenceofmagneticfields, / etc.Furthermore,Ballantyneetal.(2001)foundthatmodelsforre- h The process of backscattering and fluorescence of X-rays from flectionbyatmospheresinhydrostaticequilibriumcouldbefitby p cosmic matter known as X-ray reflection is commonly observed dilutedversionsofconstant-densityreflectionmodels. - throughout astronomy. We are concerned here with the situation o Wehavenowassembledanextendedgridofmodelsforwhich r wheretheX-rayirradiationissointensethatitdeterminestheion- theionizationparameter,irradiatingspectralindexandironabun- t izationstateofthematerial.ThisoccursinaccretingX-raysources s dancearefreeparameters.Atthesametimetheoriginalcodehas a suchasGalacticBlackHoleCandidates(BHC)andActiveGalac- beenexpandedtoincludefurtherionizationspecies.Allabundant : ticNuclei(AGN),andmayalsoberelevanttoGamma-RayBursts v speciesandtheirimportanttransitionsarenowincluded.Thepur- (GRB). i pose of this paper is to present example spectra from across this X The irradiated gas is Compton thick, which requires that grid which can be used as a guide to the interpretation of AGN, r Comptonization of the radiation as well as the necessary atomic BHCandGRBX-rayspectra. a physicsbedealtwith.Resultsofsuchcomputationshavebeenpub- lishedoverthelasttenyears,firstforconstant-densityatmospheres (Ross & Fabian 1993; Z˙ycki et al. 1994; Ross, Fabian & Young 1999)andmorerecentlyfordensitystructuresinhydrostaticequi- 2 METHOD libium(Nayakshin,Kazanas&Kallman2000;Ballantyne,Ross& 2.1 RadiativeTransfer Fabian2001;Ro´z˙an´skaetal.2002;Maucheetal.2004).Reason- ableagreementisfoundbetweenmostoftheseresults(Pe´quignot Our calculations extendand improve onthe modelsdiscussed by etal.2002). Ross, Fabian & Young (1999). Now the illuminating radiation is Most methods are computationally very timeconsuming, so assumedtohaveacutoffpower-lawspectrum, moneltyholidmriutendsrreeglaiotinvseloyfrpaapriadmlye,toernstphaeceothhaevrehabneden, wexhpelnortehde.iOlluur- FE =AE−Γ+1exp(−E/Ec), (1) minatedgasisassumedtohaveconstantdensity.Suchmodelsare that extends to higher photon energies. Different values of the still useful for several reasons. The overall geometry is still not photon index Γ are treated, while the cutoff energy is fixed at understood for many sources. Evenwhen asimpleaccretion-disc Ec = 300keV. The amplitude A is chosen so that the total il- structure is assumed, detailed calculations of hydrostatic equilib- luminatingflux,Ftot = FEdE,correspondstoadesiredvalue R riumaresubject touncertainties inthetotal thickness of thedisc oftheionizationparameter, (andhencetheverticalcomponentofthelocalgravitationalfield), the boundary condition (either pressure or height) at the base of ξ= 4πFtot. (2) theilluminatedlayer,theexternalpressureexertedbythecorona, nH Theilluminationisincidentontheupper surfaceofaplane- parallelslabrepresentingthetoplayerofanopticallythickmedium ⋆ [email protected] suchasan accretiondisc. Theslabhas hydrogen number density (cid:13)c 2003RAS 2 R.R. Ross&A.C. Fabian nH = 1015cm−3 and Thomson depth τT > 5. (Larger Thom- (1974)isusedtocalculatetheresultingeffectontheionizationbal- sondepthsaretreatedforlargervaluesofξ,sincetheillumination ance. can penetrate to greater depths when the gas is more highly ion- Forallelementsexceptiron,totalrecombinationratesasfunc- ized.)Nonetfluxisallowedtoentertheslabfrombelow,sothat tions of density and temperature are derived from the tables of theemergent radiationisdueentirelytoreprocessed illumination Summers (1974). These rates include two effects that are impor- (“reflection”).Additionalradiationfrombeneaththesurfacelayer tantathighdensities:theincreaseintherecombinationrateatlow couldbeapproximatedbyaddingasoftblackbodyspectrumtothe temperatures due to three-body recombination and the reduction calculatedreflectionspectrum(seeSection4). inthedielectronicrecombinationrateathightemperaturesdueto AsdescribedbyRoss&Fabian(1993),thepenetrationofthe collisionalionizationofthehighlyexcitedstatesthatfollowradia- illuminatingradiationistreatedseparatelyfromthetransferofthe tionlessrecombination(Burgess&Summers1969).Atlowdensi- diffuseradiationproducedviascatteringoremissionwithinthegas. ties,theseratesareinreasonableagreementwithmoremodernfits Inordertoextendthetreatmentofthediffuseradiationtophoton forcombinedradiativeanddielectronicrecombination(Arnaud& energies above 100 keV, Compton scattering is treated using the Rothenflug1985).Foriron,ratesforradiativeanddielectronicre- Fokker-PlanckequationofCooper(1971): combinationarecalculatedusingthefitsofArnaud&Rothenflug (1985) and Verner & Ferland (1996). Three-body recombination ∂n = neσT 1 ∂ α(E,θ)E4 n+θ∂n , (3) ofironisneglected, sinceitisunimportant atthedensitiesunder (cid:16)∂t(cid:17)FP mec E2∂E h (cid:16) ∂E(cid:17)i consideration (Jacobsetal.1977). Ratesforradiativerecombina- where n is the photon occupation number, E is the photon en- tiondirectlytogroundlevelsarecalculatedusingtheMilnerelation ergy,neisthefree-electronnumberdensity,andθ=kT.Herethe (e.g.,Bates&Dalgarno1962). Fokker-PlanckequationofKompaneets(1957)hasbeenmodified The most important emission lines for each ion are treated bytheterm inthecalculations. Sincetheilluminatedatmosphereisthickand dense,resonancelinesareassumedtobeopticallythick(“caseB”), 1+β(θ)/(1+0.02E) α(E,θ)= 1+9×10−3E+4.2×10−6E2 , (4) greatlyreducingthenumberofimportantlines.Atotalof274mul- tipletsareincluded;individual lineswithinamultipletarenotre- withEinkeVandwith solved. Line energies and oscillator strengths for resonance lines 5 θ 15 θ 2 θ are taken from the results of the Opacity Project (Verner, Verner β(θ)= + 1− . (5) 2mec2 8 (cid:16)mec2(cid:17) (cid:16) mec2(cid:17) & Ferland 1996). Excitation and line energies of nonresonance lines,aswell ascollisionstrengths for alllines, arederived from Equation(3)isapplicableforE . 1MeV.Thediffuseradiation theCHIANTIdatabase(Dereetal.2001).Parametervaluesmiss- field is taken to satisfy the steady-state Fokker-Planck/diffusion ing from these databases are taken from Kato (1976), Raymond equation, & Smith (1977), Gaetz & Salpeter (1983), or Landini & Mon- (cid:16)∂∂nt(cid:17) + ∂∂z (cid:16)3cκ∂∂nz(cid:17)+ j8EπhE3c33 −cκAn≡0, (6) tshigenroercioFmobsisnia(t1io9n90li)n,eassonfeFceesXsaXrVy.ITanhdeFireonXXKVα(nlienaers7t.r0eaatnedd6ar.7e FP keV, respectively) and the fluorescence lines of FeVI–XVI (near where z is the vertical height within the slab, jE is the spectral 6.4keV).KαfluorescenceofFeXVII–XXIIisassumedtobesup- emissivity, κ = κA +κKN isthetotalopacity (per volume),κA pressedbyautoionization(Augereffect)duringresonancetrapping is the absorption opacity, and κKN is the Klein-Nishina opacity (Ross, Fabian & Brandt 1996). Recombinations to excited levels f1o0r−C3o<mpEton<sc1at0t3erkinegV..WTeheapepnleyrgeyqureastioolnuti(o6n) tios Era/d∆iatEion=wi5t0h ofFeXVII–XXIIareassumedtoresultultimatelyin3s → 2pline emission(Liedahletal.1990). throughout the0.1–10keVspectralrange(exceptforaresolution Resonance lines require special attention. Resonance-line of 70around theironKαlines),withsomewhat lower resolution photons can avoid destruction during resonance trapping by two outsidethatrange. mechanisms: Compton scattering out of the narrow line core be- tween resonance scatterings and reemission in the far line wings during resonance scattering. The fraction avoiding destruction is 2.2 AtomicData takentobe Astheradiationfieldisrelaxedtoasteadystate,thelocaltemper- atureandfractionalionizationofthegasarefoundbysolvingthe f = (κT/κ)Pcont+Pesc. (7) equations of thermal and ionization equilibrium, as described by Pcont+Pcoll+Pesc Ross&Fabian(1993).Forthisnon-LTEcalculation,wehaveex- Here κT is the Thomson opacity, κ is the total continuum opac- tendedthenumber ofelementsandtherangeofionstreated,and ityat thelineenergy, Pcont istheprobabilityper resonance scat- wehaveupdatedmuchoftheatomicdataemployed.Inadditionto teringthatthephotonundergoesacontinuumprocess(absorption fully-ionizedspecies,thefollowingionsareincludedinthecalcu- orComptonscattering),andP istheprobabilityperresonance coll lations:CIII–VI,NIII–VII,OIII–VIII,NeIII–X,MgIII–XII,SiIV– scatteringthatcollisionaldeexcitationoccursinsteadofreemission XIV,SIV–XVI,andFeVI–XXVI. (Hummer1968).TheescapeprobabilityPescduetoreemissionin Photoionization cross sections for all subshells of the ions thefarlinewings(Hummer&Rybicki1971)iscalculatedusingthe treatedare calculated fromthefitsof Verner &Yakovlev (1995). approximationfortheK2functiongivenbyHollenbach&McKee Ratesfordirectcollisionalionizationandexcitationautoionization (1979). A Doppler line profile is assumed for all resonance lines aretakenfromArnaud &Rothenflug(1985) and Arnaud&Ray- excepttheFeKαline,whereaLorentzprofileisassumeddueto mond(1992).Forcarbonthroughsulfur,Augerionizationistreated theimportanceofthedampingwings.Linephotonsthatavoidde- asdescribedbyWeisheit&Dalgarno(1972).Foriron,weemploy structionduringresonancetrappingareaddedtothecontinuumby theprobabilitiesformultipleAugerionizationcalculatedbyKaas- meansofthelocalemissivity. tra&Mewe(1993),andageneralizationofthemethodofWeisheit Elements lighter than iron are assumed to have solar abun- (cid:13)c 2003RAS,MNRAS000,1–6 Reflection Models 3 Figure1.Structureasafunction ofThomsondepthfortheisolatedslab illuminatedononeside.Theupperpanelshowsthetemperature,whilethe middle and bottom panels show the ion fractions of oxygen and silicon, respectively. dances (Morrison & McCammon 1983), while the abundance of Figure2.Spectrafortheisolatedslabilluminatedononeside.Thedashed ironissettoafactorAFe timesitssolarvalue.Modelsaregener- curveistheilluminatingspectrum,thesolidcurveisthe“reflected”spec- atedwithunderabundancesaswellasoverabundancesofiron.On trumemergingfromtheilluminatedside,andthedottedcurveisthe“trans- theonehandtheX-rayspectraofsomeSeyfertgalaxiesappearto mitted” spectrum emerging from the far side. The lower panel shows a requirehighabundanceofiron,forexampleMCG–6-30-15(Fabian close-up ofaportion ofthe broader spectrum shownintheupper panel. etal.2002)and1H0707-49(Bolleretal.2002),andShemmeret Thespectralresolutionis30. al. (2004) have reported a strong correlation between metallicity and accretion rateina sampleof luminous quasars. Onthe other hand, Nomoto et al. (1997) have found that Type II supernovae agreement because ourcalculationsassumethat heliumisalways producethefollowingaverageabundancesrelativetosolarvalues: fully ionized. Normally our interest is in reflection by a highly AC = 0.2, AN = 0.01, AO = 1.3, ANe = 0.9, AMg = 1.2, optically-thick medium. Inorder for all of the incident energy to ASi = 1.1, AS = 0.7, and AFe = 0.35. In that case, oxygen, escapebackouttheilluminatedsurface,thetotalradiativeenergy neon,magnesiumandsiliconarenearsolarabundances,whilethe densityincreaseswithThomsondepthtosuchadegreethattheas- abundanceofironismarkedlyreduced. sumptionthatheliumisfullyionizedshouldbesatisfactory.When radiationisfreetoleavethefarsurfaceofamarginallythickslab, however,heliumneednotbefullyionizedthroughout.Dumontet 2.3 TestCase:anIsolatedSlab al. (2003) found a large fraction of He+ ions at depths τT > 3. RecentlyDumontetal.(2003)havecriticizedcalculations,suchas Ourcalculationoftheisolatedslabservesmainlyasatestforthe oursandthoseofNayakshinetal.(2000),thatemploytheescape Lyman-α lines of hydrogen-like ions, which are produced in the probabilityintreatingemissionlines. Dumontetal.usean“accel- hotterlayersnearertheilluminatedsurface. eratedlambdaiteration”methodthatincludesadetailedtreatment Thebiggestchangerequiredforthismodelisintheboundary ofradiativetransferwithinthespectrallinesthemselves.Theypoint conditionatthefarsideoftheslab.Diffuseradiationisallowedto out that their code has the drawback of being time-consuming, emergethere,withtheescapingfluxcalculatedinthesamewayas whichprecludesitfromeasilygeneratinglargegridsofmodelsfor attheilluminatedsurface(seeFoster,Ross&Fabian1986).Other fittingdata.Inparticular,theyhaveappliedtheirmethodtoaniso- changes must also be made to the method described previously. latedslabthatisilluminatedononeside.ThetotalThomsondepth ThegasdensityisreducedtonH = 1012cm−3.Theilluminating of the slab is τT = 4, and the illuminating flux corresponds to spectrumisasimplepowerlawwithphotonindexΓ = 2extend- ξ = 103 ergcms−1.Asatestofourmethod,wehaveperformed ingfrom0.1eVto100keV, andtheenergyresolution isfixedat ourowncomputationforthissituation.Wecannotexpectcomplete E/∆E =30.ThemetalabundancesaresettothevaluesofAllen (cid:13)c 2003RAS,MNRAS000,1–6 4 R.R. Ross&A.C. Fabian (1973), which differ slightly from those of Morrison & McCam- mon(1983). Figure1showsthetemperaturestructureandtheionfractions foroxygen andsiliconthatwecalculatefortheisolatedslab.For τT . 2.5, our results are in good agreement with those of Du- mont et al.(2003). Thedifferences atgreater Thomson depth are presumablyduetothelackofHe+inourmodel. Thereflectedspectrumthatwecalculatefortheisolatedslab isshowninFigure2.Dumont etal.(2003) concluded that useof the escape probability must result in a drastic overestimation of thestrengthoftheLyman-αlinesofhydrogen-likeions.However, wefindtheLyman-αlinesofCVI(0.37keV),OVIII(0.65keV), MgXII(1.5keV),SiXIV(2.0keV),andSXVI(2.6keV)tobein excellentagreementwiththeirresults. Inparticular,theOVIIIline hasanequivalentwidthof27eVwithrespecttothetotal(incident plus reflected) continuum, compared to their value of 28 eV. For theSiXIVline,whichiscomplicatedbyasteeperunderlyingcon- Figure 3. Reflected spectra for three values of the ionization parameter, tinuumandblendingwiththeHe-likeline,weestimateanEWof withξ = 102 (bottomcurve),103,and104 ergcms−1 (topcurve).The 14eVcomparedtotheirvalueof9.5eV.Inourcalculations,Comp- incidentspectrumhasΓ=2.0,andironhassolarabundance. tonscatteringofresonance-linephotonsoutofthenarrowlinecore turnsouttobemuchmoreimportantthanreemissioninthefarline wings.Thatis,thefirsttermofthenumeratorinequation(7)com- pletelydominatesoverthesecondterm. TheFeKαlineissomewhatstrongerinourcalculation.Since it is dominated by the Fe XXV intercombination line (6.7 keV), however,thisisprobablyduetodifferentapproximationsintreating theatomicphysics.Curiously,wefindtheLyman-αlineofNVII (0.50keV)tobeweakerthanfoundbyDumontetal.(2003).Dif- ferencescanbeseeninotheremissionlines,buttheseareproduced deeper within the slab, where He+ could be a factor. Fig. 2 also shows the calculated spectrum emerging from the far side of the slab.BecauseofthelackofHe+,theEUVportionofthetransmit- tedspectrumcutsoffatahigherenergythanfoundbyDumontet al.(2003). Overall, our method appears to give reasonably accurate re- sults,withcomputing timesshortenough toallowtheproduction of a large grid of reflection models for fitting to observed X-ray spectra. Figure4.Reflectedspectraforfivevaluesofthephotonindex,withΓ = 1.2(topcurve),1.6,2.0,2.4,and2.8(bottomcurve).Theincidentspec- trumhasξ = 103 ergcms−1,andironhassolarabundance.Successive spectrahavebeenoffsetbyfactorsoffiveforclearerpresentation. 3 RESULTS For an optically-thick medium, we have calculated model reflec- tionspectracoveringarangeofvaluesfortheionizationparameter allatopashallowabsorptiontrough.TheNVIIKαline,atanen- (ξ = 30,100,300,1000,3000,and10000ergcms−1),thepho- ergy(0.50 keV) just above theCVI K-edge, isvery weak. When tonindex(Γ = 1.0to3.0instepsof0.2),andtheironabundance ξ is reduced to 102 ergcms−1, there is very little ionization for (AFe = 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, and 10.0) relative toitssolar τT & 21. Thenarrow FeKα line near 6.4 keV is due to fluores- value.Theresultisagridof462reflectionmodels. cence, and the spectral region below 3 keV exhibits a myriad of Of course, the ionization parameter has a marked effect on emissionfeaturesatopadeepabsorptiontrough. emissionandabsorptionfeaturesinthereflectedspectrum.Figure3 Inadditiontoaffectingtheoverallslopeofthereflectedspec- showsreflectedspectraforthreedifferentvaluesofξ.Ineachcase, trum,thephotonindexΓalsoaffectstheemissionandabsorption theincidentspectrumhasΓ = 2.0,andironhassolarabundance features, since harder illuminating spectra have greater ionizing (AFe = 1). For ξ = 104 ergcms−1, the surface layer is highly power.Figure4showsreflectedspectraforfivedifferentvaluesof ionized,withFeXXV–XXVIIdominatingforτT .7.Theonlyim- Γ.Ineachcase,theincidentspectrumhasξ=103ergcms−1,and portantemissionfeatureisthehighlyCompton-broadenedironKα ironhassolarabundance(AFe =1). ForΓ=1.2or1.6,theillu- linepeaking at7.0keV.Forξ = 103 ergcms−1,theilluminated minatedgasismorehighlyionizedthanforΓ=2.0.TheironKα gasisnotashighlyionized.FeXXVdominatesforτT .1,andthe featureisabroadercombinationofFeXXVandFeXXVIlines,and lighterelementsarenolongerfullyionizedbelowthat.Thestrong thelinesofthelighterelementsareweaker.WithΓ=2.4or2.8,on iron Kα emission is dominated by the FeXXV intercombination theotherhand,theilluminatedgasislesshighlyionized.FeXVIII– line, and Compton broadening is still important. The spectral re- XXII dominate at the outer surface instead of Fe XXV, so the Fe gionbetween0.3and3keVshowsKαlinesofCVI,OVIII,NeX, Kα line is much weaker, while the Fe Lα lines are stronger and MgXII,SiXIII–XIV,andSXV–XVI,aswellasafewFeLαlines, morenumerous.TheKαlinesofthelighterelementsarestronger (cid:13)c 2003RAS,MNRAS000,1–6 Reflection Models 5 Figure 5. Reflected spectra forthree values ofthe iron abundance, with Figure6.Emergentspectraforpurereflection(bottomcurve)andwhena AFe = 0.2(topcurve), 1,and5(bottom curve)times solarabundance. softblackbodyspectrum(kTbb=0.010keV)entersthesurfacelayerfrom Theincidentspectrumhasξ = 103ergcms−1andΓ = 2.0.Successive below.Resultsareshownwiththeblackbodyfluxequaltotheilluminating spectrahavebeenoffsetbyfactorsoffiveforclearerpresentation. flux(middle curve) and ten times greater than the illuminating flux(top curve).Theilluminatingspectrumhasξ = 103ergcms−1andΓ= 2.0, andironhassolarabundance.Successivespectrahavebeenoffsetbyfactors (asisthecontinuumabsorption),withHe-likeexceedingH-likefor ofthreeforclearerpresentation. Mg,SiandS.Theoxygenlinesareespeciallyenhancedbyasoft illuminatingspectrum. TheeffectsofalteringtheabundanceofironareshowninFig- keVenteringtheilluminatedlayerfrombelow.Modelsareshown ure 5. Again, the illuminating radiation has ξ = 103 ergcms−1 withblackbodyfluxesequaltotheilluminatingfluxandtentimes and Γ = 2.0. With iron reduced to 0.2 times its solar abun- greater thantheilluminatingflux.Inbothcases, moreEUVradi- dance,boththeKαemissionline(6.7keV)andtheK-absorption ationemergesthanforpurereflection,asexpected, but theX-ray feature (∼ 10keV) are reduced compared to the reflected spec- spectrum is essentially unchanged. Furthermore, accretion power trumwithsolarabundance. Also,lessFeLαemissionisblended liberatedinanaccretiondisccorona (producing theillumination) with the NeX Kα line (1.0 keV). With iron at five times solar shouldreducetheamountofpowerliberatedlocallywithinthedisc, abundance,theincreasedironabsorptionlowersthecontinuumfor sothe“bigbluebump”maynotbeproducedinthesameregionsof 1.E .40keV,whiletheironKα(6.7keV),Lα(∼1keV),and thediscastheX-rayreflection.Forthesereasons,wehavechosen 2p → 2s (∼0.1keV) emission linesare enhanced. At the same tocalculatereflectionspectraonly. time,theKαlinesofMg,Si,andSareweakened,partlybecause A signature of ionized reflection is the soft excess emission theseelementsdonotremainhighlyionizedtoasgreatadepth. whichoccursinthe0.2-2keVbandduetolinesandbremsstrahlung Thegridof462modelsisbeingmadeavailableasanionized- fromthehotsurfacelayers.Itgivesabumpintherelativistically- reflectionmodel,calledREFLION,foruseintheXSPECdata-fitting blurredspectrumwhich,whenfoldedthoughanXMM-Newtonpn routine(Arnaud1996). response matrix in order to simulate real data, is well-fittedby a blackbodyoftemperature150eV(residualslessthan10percent). This may be relevant to the 100-200 eV temperature component foundintheX-rayspectraofmanylow-redshiftPGquasars(Gier- 4 DISCUSSION linski&Done2004;Porquetetal.2004)whichthereforemaybe Thetreatment of Ross& Fabian(1993) has been extended toin- duetoionizedreflection. cludeallcommonlyimportantionizationstatesandtransitions.The Wehavechecked whetherthemanyemissionfeaturesinthe resulting spectral grids should be useful for interpreting spectra reflectionspectrumarelikelytobereadilyobservable.Ifthereislit- fromAGN,BHCandGRB.Majorsignaturesofmoderatelyionized tletoblurthespectrumasaresultofeitherinstrumentalresolution reflectionareaCompton hump atabout 30keV, astrongionized orshearwithintheionizedreflector,thenthelineswillbeobserv- ironlineat6.7keV,multipleemissionlinesontopofasoftcontin- able.However,whenthereisstrongshear,asintheinnerpartsofan uumbetween0.3and3keVandafurtherEUVhumpofemission accretiondisc,thenthesitutaionismuchmoredifficult.Weshow peaking at about 60 eV. The iron abundance has a significant ef- inFigure7theeffectofrelativisticblurringinanaccretiondiscin- fectontheshapeofthereflectedcontinuumbetweenabout3and clinedat30degwheretheemissionhasanemissivityindexof3and 30keV. extendsfrom3to100gravitationalradii.Hereξ=103ergcms−1, The spectra that we have calculated result entirely from re- Γ=2.0,andAFe=1.Thebroad(helium-like)iron-Klineisvery flection(reprocessedillumination).Asignificantfractionofthein- clear,asisarelativelyweakbroadoxygenline.Aweakfeatureof cident X-ray energy emerges as softer radiation (asdiscussed re- Fe-LandNewithaboutthesameequivalentwidthasO(∼120eV centlybyMadejandRo´z˙an´ska2004,forexample).Theaccretion relativetothelocalreflection‘continuum’alone),togetherwithSi discbeneaththeilluminatedsurfacelayercanbeexpectedtopro- andSarejustdiscernibleinthisreflection-onlyspectrum.Figure8 duce additional soft radiation (the “big blue bump”) that can en- demonstrateshowextremerelativisticblurringandchangesiniron hancetheEUVhump.Figure6showswhathappenswhenthecal- abundanceaffectobservationsofiron-Kfeatures.Alowironabun- culations include asoft blackbody spectrum withkT = 0.010 dance,perhapsduetoSNIIenrichment,producesasmalledgein bb (cid:13)c 2003RAS,MNRAS000,1–6 6 R.R. Ross&A.C. Fabian Bates D.R., Dalgarno A., 1962, in Atomic and Molecular Pro- cesses,ed.D.R.Bates.AcademicPress,NewYork,p.245 BollerTh.etal.,2002,MNRAS,329,L1 BurgessA.,SummersH.P.,1969,ApJ,157,1007 CooperG.,1971,Phys.Rev.D,3,2312 DereK.P.,LandiE.,YoungP.R.,DelZannaG.,2001,ApJS,134, 331 Dumont A.-M.,CollinS.,PaletouF.,Coupe´ S.,Godet O.,Pelat D.,2003,A&A,407,13 FabianA.C.etal.,2002,MNRAS,335,L1 FosterA.J.,RossR.R.,FabianA.C.,1986,MNRAS,221,409 GaetzT.J.,SalpeterE.E.,1983,ApJS,52,155 GierlinskiM.,DoneC.,2004,MNRAS,349,L7 HollenbachD.,McKeeC.F.,1979,ApJS,41,555 HummerD.G.,1968,MNRAS,138,73 Figure 7. Effect of relativistic blurring on the emergent spectrum. The HummerD.G.,RybickiG.,1971,ARA&A,9,237 modelwithξ = 103 ergcms−1,Γ = 2.0,andAFe = 1(centrallinein JacobsV.L.,DavisJ.,KeppleP.C.,BlahaM.,1977,ApJ,211,605 Fig.3,nowdashed)hasbeenblurredasifobservedfromadiscwithemis- KaastraJ.S.,MeweR.,1993,A&AS,97,443 sivityindex3extendingfrom3to100gravitationalradiiaroundamaximal KatoT.,1976,ApJS,30,397 Kerrblackhole,viewedataninclinationangleof30deg(solidline). KompaneetsA.S.,1957,SovietPhys.JETP,4,730 LandiniM.,MonsignoriFossiB.C.,1990,A&AS,82,229 LiedahlD.A.,KahnS.M.,OsterheldA.L.,GoldsteinW.H.,1990, ApJ,350,L37 MadejJ.,Ro´z˙an´skaA.,2004,MNRAS,347,1266 Mauche C.W., Liedahl D.A., Mathiesen B.F., Jimenez-Garate M.A.,RaymondJ.C.,2004,ApJ,inpress(astro-ph/0401328) MorrisonR.,McCammonD.,1983,ApJ,270,119 NayakshinS.,KazanasD.,KallmanT.R.,2000,ApJ,537,833 Nomoto K., Hashimoto M., Tsujimoto T., Thielemann F.-K., KishimotoN.,KuboY.,NakasatoN.,1997, Nucl.Phys.A,616, 79 Pe´quignotD.etal.,2002,inFerlandG.J.,SavinD.W.,eds,ASP Conf. Ser. Vol. 247, Spectroscopic Challenges of Photoionized Plasmas.Astron.Soc.Pac.,SanFrancisco,p.533 PorquetD.,ReevesJ.N.,O’BrienP.,BrinkmannW.,2004,A&A, 422,85 RaymondJ.C.,SmithB.W.,1977,ApJS,35,419 Figure8.Effectsofironabundanceonrelativistic-blurredspectra.Models forξ=30ergcms−1andΓ=2.0withAFe=0.3(solid)andAFe=3 ShemmerO.,NetzerH.,MaiolinoR.,OlivaE.,CroomS.,Corbett (dashed)havebeenblurredasifobservedfromadiscwithemissivityindex E.,DiFabrizioL.,2004,ApJinpress(astro-ph/0406559) 3extendingfrom2to100gravitationalradiiaroundamaximalKerrblack RossR.R.,1979,ApJ,233,334 hole,viewedataninclinationangleof30deg. RossR.R.,FabianA.C.,1993,MNRAS,261,74 RossR.R.,FabianA.C.,BrandtW.N.,1996,MNRAS,278,1082 RossR.R.,FabianA.C.,YoungA.J.,1999,MNRAS,306,461 thespectrum,whereasahighironabundance,perhapsduetoSNIa Ro´z˙an´ska A., Dumont A.-M., Czerny B., Collin S., 2002, MN- enrichment,producesanapparentlargeedge. RAS,332,799 SummersH.P.,1974,AppletonLaboratory,InternalMemo367 VernerD.A.,FerlandG.J.,1996,ApJS,103,467 5 ACKNOWLEDGEMENTS VernerD.A.,VernerE.M.,FerlandG.J.,1996,AtomicDataNucl. DataTables,64,1 RRRandACFthanktheCollegeoftheHolyCrossandtheRoyal VernerD.A.,YakovlevD.G.,1995,A&AS,109,125 Society,respectively,forsupport. WeisheitJ.C.,1974,ApJ,190,735 WeisheitJ.C.,DalgarnoA.,1972,Astrophys.Lett.,12,103 Z˙yckiP.T.,KrolikJ.H.,ZdziarskiA.A.,KallmanT.R.,1994,ApJ, REFERENCES 437,597 AllenC.W.,1973,AstrophysicalQuantities.AthlonePress,Lon- don ThispaperhasbeentypesetfromaTEX/LATEXfilepreparedbythe Arnaud K.A., 1996, in Jacoby G.H., Barnes J., eds, ASP Conf. author. Ser.Vol.101,AstronomicalDataAnalysisSoftwareandSystems V.Astron.Soc.Pac.,SanFrancisco,p.17 ArnaudM.,RaymondJ.,1992,ApJ,398,394 ArnaudM.,RothenflugR.,1985,A&AS,60,425 BallantyneD.R.,RossR.R.,FabianA.C.,2001,MNRAS,327,10 (cid:13)c 2003RAS,MNRAS000,1–6