ebook img

A comprehensive course in number theory PDF

269 Pages·2012·1.661 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A comprehensive course in number theory

A Comprehensive Course in B A k Number Theory e A Comprehensive Course in r A Number K Developed from the author’s popular text, A Concise Introduction to the Theory L C b of Numbers, this book provides a comprehensive initiation to all the major o branches of number theory. Beginning with the rudiments of the subject, the m y aauntdh porri mpraolciteye tdess ttiong m; aonre a acdcvoaunncte odf ntoupmicbse, ri nficelluddsi ning t ehlee mclaesnstsic oafl cveryinp tiongclruadpihnyg pre m h pthreoopreyr tiinecsl uodf itnhge isr tuundiitess, iodfe tahles Raniedm idaenanl zcelatas-sfeusn;c atsiopne,c tthse o pf raimnael-yntiucm nbuemr ber en Theory C s theorem and primes in arithmetical progressions; a description of the Hardy– ive r Littlewood and sieve methods from, respectively, additive and multiplicative e C number theory; and an exposition of the arithmetic of elliptic curves. V o o The book includes many worked examples, exercises and, as with the u C r earlier volume, there is a guide to further reading at the end of each chapter. s y e r Its wide coverage and versatility make this book suitable for courses extending i o from the elementary to the graduate level. n e N Al An BAker h T u r m e Alan Baker, FRS, is Emeritus Professor of Pure Mathematics in the University b b of Cambridge and Fellow of Trinity College, Cambridge. His many distinctions m e include the Fields Medal (1970) and the Adams Prize (1972). u r N n T i e s h r u e o C o e v si r n e y h e r p m o C A : r e k A B Cover designed by Hart McLeod Ltd AComprehensiveCourseinNumberTheory Developedfromtheauthor’spopulartext,AConciseIntroductiontotheTheoryof Numbers,thisbookprovidesacomprehensiveinitiationtoallthemajorbranchesof numbertheory.Beginningwiththerudimentsofthesubject,theauthorproceedsto moreadvancedtopics,includingelementsofcryptographyandprimalitytesting;an accountofnumberfieldsintheclassicalveinincludingpropertiesoftheirunits,ideals andidealclasses;aspectsofanalyticnumbertheoryincludingstudiesoftheRiemann zeta-function,theprime-numbertheoremandprimesinarithmeticalprogressions;a descriptionoftheHardy–Littlewoodandsievemethodsfrom,respectively,additive andmultiplicativenumbertheory;andanexpositionofthearithmeticofelliptic curves. Thebookincludesmanyworkedexamples,exercisesand,aswiththeearlier volume,thereisaguidetofurtherreadingattheendofeachchapter.Itswidecoverage andversatilitymakethisbooksuitableforcoursesextendingfromtheelementaryto thegraduatelevel. AlanBaker,FRS,isEmeritusProfessorofPureMathematicsintheUniversityof CambridgeandFellowofTrinityCollege,Cambridge.Hismanydistinctionsinclude theFieldsMedal(1970)andtheAdamsPrize(1972). A COMPREHENSIVE COURSE IN NUMBER THEORY ALAN BAKER UniversityofCambridge cambridge university press Cambridge,NewYork,Melbourne,Madrid,CapeTown, Singapore,SãoPaulo,Delhi,MexicoCity CambridgeUniversityPress TheEdinburghBuilding,CambridgeCB28RU,UK PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork www.cambridge.org Informationonthistitle:www.cambridge.org/9781107019010 (cid:2)c CambridgeUniversityPress2012 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2012 PrintedandiboundiintheUnitedKingdombyitheMPGiBooksiGroup AcataloguerecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloguinginPublicationdata Baker,Alan,1939– Acomprehensivecourseinnumbertheory/AlanBaker. p. cm. Includesbibliographicalreferencesandindex. ISBN978-1-107-01901-0(hardback) 1. Numbertheory–Textbooks. I. Title. QA241.B237 2012 512.7–dc23 2012013414 ISBN978-1-107-01901-0Hardback ISBN978-1-107-60379-0Paperback CambridgeUniversityPresshasnoresponsibilityforthepersistenceor accuracyofURLsforexternalorthird-partyinternetwebsitesreferredto inthispublication,anddoesnotguaranteethatanycontentonsuch websitesis,orwillremain,accurateorappropriate. Contents Preface pagexi Introduction xiii 1 Divisibility 1 1.1 Foundations 1 1.2 Divisionalgorithm 1 1.3 Greatestcommondivisor 2 1.4 Euclid’salgorithm 2 1.5 Fundamentaltheorem 4 1.6 Propertiesoftheprimes 4 1.7 Furtherreading 6 1.8 Exercises 7 2 Arithmeticalfunctions 8 2.1 Thefunction[x] 8 2.2 Multiplicativefunctions 9 2.3 Euler’s(totient)functionφ(n) 9 2.4 TheMöbiusfunctionμ(n) 10 2.5 Thefunctionsτ(n)andσ(n) 12 2.6 Averageorders 13 2.7 Perfectnumbers 14 2.8 TheRiemannzeta-function 15 2.9 Furtherreading 17 2.10 Exercises 17 3 Congruences 19 3.1 Definitions 19 3.2 Chineseremaindertheorem 19 3.3 ThetheoremsofFermatandEuler 21 3.4 Wilson’stheorem 21 v vi Contents 3.5 Lagrange’stheorem 22 3.6 Primitiveroots 23 3.7 Indices 26 3.8 Furtherreading 26 3.9 Exercises 26 4 Quadraticresidues 28 4.1 Legendre’ssymbol 28 4.2 Euler’scriterion 28 4.3 Gauss’lemma 29 4.4 Lawofquadraticreciprocity 30 4.5 Jacobi’ssymbol 32 4.6 Furtherreading 33 4.7 Exercises 34 5 Quadraticforms 36 5.1 Equivalence 36 5.2 Reduction 37 5.3 Representationsbybinaryforms 38 5.4 Sumsoftwosquares 39 5.5 Sumsoffoursquares 40 5.6 Furtherreading 41 5.7 Exercises 42 6 Diophantineapproximation 43 6.1 Dirichlet’stheorem 43 6.2 Continuedfractions 44 6.3 Rationalapproximations 46 6.4 Quadraticirrationals 48 6.5 Liouville’stheorem 51 6.6 Transcendentalnumbers 53 6.7 Minkowski’stheorem 55 6.8 Furtherreading 58 6.9 Exercises 59 7 Quadraticfields 61 7.1 Algebraicnumberfields 61 7.2 Thequadraticfield 62 7.3 Units 63 7.4 Primesandfactorization 65 Contents vii 7.5 Euclideanfields 66 7.6 TheGaussianfield 68 7.7 Furtherreading 69 7.8 Exercises 70 8 Diophantineequations 71 8.1 ThePellequation 71 8.2 TheThueequation 74 8.3 TheMordellequation 76 8.4 TheFermatequation 80 8.5 TheCatalanequation 83 8.6 Theabc-conjecture 85 8.7 Furtherreading 87 8.8 Exercises 88 9 Factorizationandprimalitytesting 90 9.1 Fermatpseudoprimes 90 9.2 Eulerpseudoprimes 91 9.3 Fermatfactorization 93 9.4 Fermatbases 93 9.5 Thecontinued-fractionmethod 94 9.6 Pollard’smethod 96 9.7 Cryptography 97 9.8 Furtherreading 97 9.9 Exercises 98 10 Numberfields 99 10.1 Introduction 99 10.2 Algebraicnumbers 100 10.3 Algebraicnumberfields 100 10.4 Dimensiontheorem 101 10.5 Normandtrace 102 10.6 Algebraicintegers 103 10.7 Basisanddiscriminant 104 10.8 Calculationofbases 106 10.9 Furtherreading 109 10.10 Exercises 109 11 Ideals 111 11.1 Origins 111 viii Contents 11.2 Definitions 111 11.3 Principalideals 112 11.4 Primeideals 113 11.5 Normofanideal 114 11.6 Formulaforthenorm 115 11.7 Thedifferent 117 11.8 Furtherreading 120 11.9 Exercises 120 12 Unitsandidealclasses 122 12.1 Units 122 12.2 Dirichlet’sunittheorem 123 12.3 Idealclasses 126 12.4 Minkowski’sconstant 128 12.5 Dedekind’stheorem 129 12.6 Thecyclotomicfield 131 12.7 Calculationofclassnumbers 136 12.8 Localfields 139 12.9 Furtherreading 144 12.10 Exercises 145 13 Analyticnumbertheory 147 13.1 Introduction 147 13.2 Dirichletseries 148 13.3 Tchebychev’sestimates 151 13.4 Partialsummationformula 153 13.5 Mertens’results 154 13.6 TheTchebychevfunctions 156 13.7 Theirrationalityofζ(3) 157 13.8 Furtherreading 159 13.9 Exercises 160 14 Onthezerosofthezeta-function 162 14.1 Introduction 162 14.2 Thefunctionalequation 163 14.3 TheEulerproduct 166 14.4 Onthelogarithmicderivativeofζ(s) 167 14.5 TheRiemannhypothesis 170 14.6 Explicitformulaforζ(cid:3)(s)/ζ(s) 171 14.7 Oncertainsums 173 Contents ix 14.8 TheRiemann–vonMangoldtformula 174 14.9 Furtherreading 177 14.10 Exercises 177 15 Onthedistributionoftheprimes 179 15.1 Theprime-numbertheorem 179 15.2 Refinementsanddevelopments 182 15.3 Dirichletcharacters 184 15.4 Dirichlet L-functions 186 15.5 Primesinarithmeticalprogressions 187 15.6 Theclassnumberformulae 189 15.7 Siegel’stheorem 191 15.8 Furtherreading 194 15.9 Exercises 194 16 Thesieveandcirclemethods 197 16.1 TheEratosthenessieve 197 16.2 TheSelbergupper-boundsieve 198 16.3 ApplicationsoftheSelbergsieve 202 16.4 Thelargesieve 204 16.5 Thecirclemethod 207 16.6 Additiveprimenumbertheory 210 16.7 Furtherreading 213 16.8 Exercises 214 17 Ellipticcurves 215 17.1 Introduction 215 17.2 TheWeierstrass℘-function 216 17.3 TheMordell–Weilgroup 220 17.4 Heightsonellipticcurves 222 17.5 TheMordell–Weiltheorem 225 17.6 Computingthetorsionsubgroup 228 17.7 Conjecturesontherank 230 17.8 Isogeniesandendomorphisms 232 17.9 Furtherreading 237 17.10 Exercises 238 Bibliography 240 Index 246

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.