Table Of ContentTextbooks in Mathematics
B
o
g
d
a
n
N
ic
a
Bogdan Nica
Bogdan Nica
A Brief Introduction to
A Brief Introduction
A
Spectral Graph Theory
B
r
i
e
f
I to Spectral Graph
n
Spectral graph theory starts by associating matrices to graphs – notably, the adjacency t
r
matrix and the Laplacian matrix. The general theme is then, firstly, to compute or o
d
estimate the eigenvalues of such matrices, and secondly, to relate the eigenvalues to u
c
structural properties of graphs. As it turns out, the spectral perspective is a powerful t Theory
i
o
tool. Some of its loveliest applications concern facts that are, in principle, purely graph
n
theoretic or combinatorial. t
o
S
This text is an introduction to spectral graph theory, but it could also be seen as an p
e
invitation to algebraic graph theory. The first half is devoted to graphs, finite fields, and c
t
how they come together. This part provides an appealing motivation and context of the ra
second, spectral, half. The text is enriched by many exercises and their solutions. l
G
r
a
The target audience are students from the upper undergraduate level onwards. We p
h
assume only a familiarity with linear algebra and basic group theory. Graph theory,
T
finite fields, and character theory for abelian groups receive a concise overview and h
e
render the text essentially self-contained. o
r
y
ISBN 978-3-03719-188-0
www.ems-ph.org
Nica Cover | Font: Frutiger_Helvetica Neue | Farben: Pantone 116, Pantone 287 | RB 17 mm
EMS Textbooks in Mathematics
EMS Textbooks in Mathematics is a series of books aimed at students or professional mathemati-
cians seeking an introduction into a particular field. The individual volumes are intended not only to
provide relevant techniques, results, and applications, but also to afford insight into the motivations
and ideas behind the theory. Suitably designed exercises help to master the subject and prepare
the reader for the study of more advanced and specialized literature.
Markus Stroppel, Locally Compact Groups
Peter Kunkel and Volker Mehrmann, Differential-Algebraic Equations
Dorothee D. Haroske and Hans Triebel, Distributions, Sobolev Spaces, Elliptic Equations
Thomas Timmermann, An Invitation to Quantum Groups and Duality
Oleg Bogopolski, Introduction to Group Theory
Marek Jarnicki and Peter Pflug, First Steps in Several Complex Variables: Reinhardt Domains
Tammo tom Dieck, Algebraic Topology
Mauro C. Beltrametti et al., Lectures on Curves, Surfaces and Projective Varieties
Wolfgang Woess, Denumerable Markov Chains
Eduard Zehnder, Lectures on Dynamical Systems. Hamiltonian Vector Fields and Symplectic
Capacities
Andrzej Skowron´ski and Kunio Yamagata, Frobenius Algebras I. Basic Representation Theory
Piotr W. Nowak and Guoliang Yu, Large Scale Geometry
Joaquim Bruna and Juliá Cufí, Complex Analysis
Eduardo Casas-Alvero, Analytic Projective Geometry
Fabrice Baudoin, Diffusion Processes and Stochastic Calculus
Olivier Lablée, Spectral Theory in Riemannian Geometry
Dietmar A. Salamon, Measure and Integration
Andrzej Skowron´ski and Kunio Yamagata, Frobenius Algebras II. Tilted and Hochschild Extension
Algebras
Jørn Justesen and Tom Høholdt, A Course In Error-Correcting Codes, Second edition
Timothée Marquis, An Introduction to Kac–Moody Groups over Fields
Bogdan Nica
A Brief Introduction
to Spectral
Graph Theory
Author:
Bogdan Nica
Department of Mathematics and Statistics
McGill University
805 Sherbrooke St W
Montreal, QC H3A 0B9
Canada
E-mail: bogdan.nica@gmail.com
2010 Mathematics Subject Classification: Primary: 05-01, 05C50; secondary: 05C25, 11T24, 15A42
Key words: Adjacency eigenvalues of graphs, Laplacian eigenvalues of graphs, Cayley graphs,
algebraic graphs over finite fields, character sums
ISBN 978-3-03719-188-0
The Swiss National Library lists this publication in The Swiss Book, the Swiss national bibliography,
and the detailed bibliographic data are available on the Internet at http://www.helveticat.ch.
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broad-
casting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use
permission of the copyright owner must be obtained.
© 2018 European Mathematical Society
Contact address:
European Mathematical Society Publishing House
Seminar for Applied Mathematics
ETH-Zentrum SEW A21
CH-8092 Zürich
Switzerland
Email: info@ems-ph.org
Homepage: www.ems-ph.org
Typeset using the author’s TEX files: Alison Durham, Manchester, UK
Printing and binding: Beltz Bad Langensalza GmbH, Bad Langensalza, Germany
∞ Printed on acid free paper
9 8 7 6 5 4 3 2 1
ForA.
Contents
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1 Graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Bipartitegraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Invariants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Chromaticnumberandindependencenumber . . . . . . . . . . . . 11
2.2 Diameterandgirth . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Isoperimetricnumber . . . . . . . . . . . . . . . . . . . . . . . . . 15
3 Regulargraphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1 Cayleygraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Cayleygraphs,continued . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Stronglyregulargraphs . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Designgraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4 Finitefields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1 Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Projectivecombinatorics . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Incidencegraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5 Squaresinfinitefields. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1 Thequadraticcharacter . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Quadraticreciprocity . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3 Paleygraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.4 Acomparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6 Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.1 Charactersoffiniteabeliangroups . . . . . . . . . . . . . . . . . . 51
6.2 Charactersumsoverfinitefields . . . . . . . . . . . . . . . . . . . 53
6.3 Morecharactersumsoverfinitefields . . . . . . . . . . . . . . . . 57
6.4 AnapplicationtoPaleygraphs . . . . . . . . . . . . . . . . . . . . 59
viii Contents
7 Eigenvaluesofgraphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.1 AdjacencyandLaplacianeigenvalues . . . . . . . . . . . . . . . . 63
7.2 Firstproperties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.3 Firstexamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8 Eigenvaluecomputations. . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8.1 Cayleygraphsandbi-Cayleygraphsofabeliangroups . . . . . . . . 73
8.2 Stronglyregulargraphs . . . . . . . . . . . . . . . . . . . . . . . . 76
8.3 Twogems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
8.4 Designgraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
9 Largesteigenvalues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
9.1 Extremaleigenvaluesofsymmetricmatrices . . . . . . . . . . . . . 85
9.2 Largestadjacencyeigenvalue . . . . . . . . . . . . . . . . . . . . . 86
9.3 Theaveragedegree . . . . . . . . . . . . . . . . . . . . . . . . . . 88
9.4 AspectralTurántheorem . . . . . . . . . . . . . . . . . . . . . . . 91
9.5 LargestLaplacianeigenvalueofbipartitegraphs . . . . . . . . . . . 93
9.6 Subgraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
9.7 Largesteigenvaluesoftrees . . . . . . . . . . . . . . . . . . . . . . 97
10 Moreeigenvalues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
10.1 Eigenvaluesofsymmetricmatrices: Courant–Fischer . . . . . . . . 103
10.2 AboundfortheLaplacianeigenvalues . . . . . . . . . . . . . . . . 104
10.3 Eigenvaluesofsymmetricmatrices: CauchyandWeyl. . . . . . . . 107
10.4 Subgraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
11 Spectralbounds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
11.1 Chromaticnumberandindependencenumber . . . . . . . . . . . . 113
11.2 Isoperimetricconstant. . . . . . . . . . . . . . . . . . . . . . . . . 116
11.3 Edgecounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
12 Farewell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
12.1 Graphswithout4-cycles . . . . . . . . . . . . . . . . . . . . . . . 127
12.2 TheErdős–Rényigraph . . . . . . . . . . . . . . . . . . . . . . . . 128
12.3 EigenvaluesoftheErdős–Rényigraph . . . . . . . . . . . . . . . . 130
Furtherreading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Solutionstoexercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Introduction
Spectral graph theory starts by associating matrices to graphs — notably, the adja-
cencymatrixandtheLaplacianmatrix. Thegeneralthemeisthen,firstly,tocompute
or estimate the eigenvalues of such matrices, and secondly, to relate the eigenval-
ues to structural properties of graphs. As it turns out, the spectral perspective is a
powerfultool. Someofitsloveliestapplicationsconcernfactsthatare,inprinciple,
purelygraphtheoreticorcombinatorial. Togivejustoneexample,spectralideasare
a key ingredient in the proof of the so-called friendship theorem: if, in a group of
people,anytwopersonshaveexactlyonecommonfriend,thenthereisapersonwho
iseverybody’sfriend.
Thistextisanintroductiontospectralgraphtheory,butitcouldalsobeseenasan
invitationtoalgebraicgraphtheory. Ontheonehand, thereis, ofcourse, thelinear
algebrathatunderliesthespectralideasingraphtheory. Ontheotherhand,mostof
our examples are graphs of algebraic origin. The two recurring sources are Cayley
graphs of groups, and graphs built out of finite fields. In the study of such graphs,
somefurtheralgebraicingredients—forexample,characters—naturallycomeup.
The table of contents gives, as it should, a good glimpse of where this text is
going. Very broadly, the first half is devoted to graphs, finite fields, and how they
come together. This part is meant as an appealing and meaningful motivation. It
providesacontextthatframesandfuelsmuchofthesecond,spectral,half.
Many sections have one or two exercises. They are optional, in the sense that
virtuallynothinginthemainbodydependsonthem. Buttheexercisesareusuallyof
the non-trivial variety, and they should enhance the text in an interesting way. The
hopeisthatthereaderwillenjoythem. Atanyrate,solutionsareprovidedattheend
ofthetext.
We assume a basic familiarity with linear algebra, finite fields, and groups, but
notnecessarilywithgraphtheory. This,again,betraysouralgebraicperspective.
Acknowledgments. IwouldliketothankPéterCsikvári,forthoughtfulfeedback;
Sebastian Cioabă, for several discussions; Jerome Baum, for early help with some
pictures;AlainMatthes,forhisonlinegalleryofnamedgraphs.