ebook img

5G physical layer technologies PDF

578 Pages·2020·37.939 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview 5G physical layer technologies

(cid:2) 5GPhysicalLayerTechnologies (cid:2) (cid:2) (cid:2) (cid:2) 5G Physical Layer Technologies MosaAliAbu-Rgheff CentreforSecurity,CommunicationsandNetworkResearch UniversityofPlymouth UnitedKingdom (cid:2) (cid:2) (cid:2) (cid:2) Thiseditionfirstpublished2020 ©2020JohnWiley&SonsLtd Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,inany formorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedbylaw. Adviceonhowtoobtainpermissiontoreusematerialfromthistitleisavailableathttp://www.wiley.com/go/ permissions. TherightofMosaAliAbu-Rghefftobeidentifiedastheauthorofthisworkhasbeenassertedinaccordancewithlaw. RegisteredOffices JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK EditorialOffice TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproductsvisitusat www.wiley.com. Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthatappears instandardprintversionsofthisbookmaynotbeavailableinotherformats. LimitofLiability/DisclaimerofWarranty Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,theymakenorepresentationsor warrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthisworkandspecificallydisclaimall (cid:2) warranties,includingwithoutlimitationanyimpliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose. (cid:2) Nowarrantymaybecreatedorextendedbysalesrepresentatives,writtensalesmaterialsorpromotionalstatements forthiswork.Thefactthatanorganization,website,orproductisreferredtointhisworkasacitationand/or potentialsourceoffurtherinformationdoesnotmeanthatthepublisherandauthorsendorsetheinformationor servicestheorganization,website,orproductmayprovideorrecommendationsitmaymake.Thisworkissoldwith theunderstandingthatthepublisherisnotengagedinrenderingprofessionalservices.Theadviceandstrategies containedhereinmaynotbesuitableforyoursituation.Youshouldconsultwithaspecialistwhereappropriate. Further,readersshouldbeawarethatwebsiteslistedinthisworkmayhavechangedordisappearedbetweenwhen thisworkwaswrittenandwhenitisread.Neitherthepublishernorauthorsshallbeliableforanylossofprofitorany othercommercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orotherdamages. LibraryofCongressCataloging-in-PublicationData Names:Abu-Rgheff,MosaAli,author. Title:5Gphysicallayertechnologies/MosaAliAbu-Rgheff,Universityof Plymouth,UK. Description:Hoboken,NJ:JohnWiley&Sons,Inc.,2020.|Includes bibliographicalreferencesandindex.| Identifiers:LCCN2019014360(print)|LCCN2019017528(ebook)|ISBN 9781119525523(AdobePDF)|ISBN9781119525493(ePub)|ISBN9781119525516 (hardback) Subjects:LCSH:5Gmobilecommunicationsystems–Equipmentandsupplies. Classification:LCCTK5103.25(ebook)|LCCTK5103.25.A292019(print)|DDC 621.39/81–dc23 LCrecordavailableathttps://lccn.loc.gov/2019014360 CoverDesign:Wiley CoverImage:©jamesteohart/Shutterstock Setin10/12ptWarnockProbySPiGlobal,Chennai,India 10 9 8 7 6 5 4 3 2 1 (cid:2) (cid:2) v Contents Preface xvii Acknowledgements xix ListofMathematicalNotation xxi ListofWirelessNetworkSymbols xxiii ListofAbbreviations xxv StructureoftheBook xxix 1 Introduction 1 1.1 Motivations 1 1.2 OverviewofContemporaryCellularWirelessNetworks 4 1.3 EvolutionofWirelessCommunicationsin3GPPReleases 7 (cid:2) (cid:2) 1.3.1 3GPPRelease8 7 1.3.2 3GPPRelease9 8 1.3.3 3GPPRelease10 8 1.3.4 3GPPRelease11 8 1.3.5 3GPPRelease12 9 1.3.6 3GPPRelease13 9 1.3.7 3GPPRelease14 9 1.3.8 3GPPRelease15(5Gphase1) 10 1.3.9 3GPPRelease16(5Gphase2) 10 1.4 MultiuserWirelessNetworkCapacityRegions 10 1.4.1 TheCapacityRegionforMultiuserChannel 12 1.4.2 AnalysisofDegradedBCwithSuperpositionCoding 12 1.4.3 TheCapacityRegionforMultiuserMIMOChannel 14 1.4.4 TheMIMOMACCapacityRegion 14 1.4.5 TheMIMOBCCapacityRegion 17 1.5 FadingWirelessChannels 19 1.6 MulticellMIMOChannels 20 1.7 GreenWirelessCommunicationsfortheTwenty-FirstCentury 20 1.7.1 NetworkPowerConsumptionModel 22 1.7.2 AntennaInterfaceLosses 22 1.7.3 PowerAmplifier(PA) 22 1.8 BSPowerModel 25 1.8.1 Small-SignalRFTransceiver 25 1.8.2 Baseband(BB)Unit 25 1.8.3 PowerSupplyandCooling 25 (cid:2) (cid:2) vi Contents 1.8.4 BSPowerConsumptionatVariableLoad 26 1.9 GreenCellularNetworks 28 1.10 GreenHeterogeneousNetworks 30 1.11 Summary 31 1.A TutorialsonTheoryandTechniquesofOptimizationMathematics:Basics 33 1.A.1 OptimizationofUnconstrainedFunctionwithaSingleVariable 33 1.A.2 OptimizationofUnconstrainedFunctionwithMultipleVariables 34 1.A.3 TheHessianMatrix 35 1.B TheoryofOptimizationMathematics 36 1.B.1 ConstrainedOptimization 37 1.B.2 BorderedHessianMatrixHB 37 1.C Karush–Kuhn–Tucker(KKT)Conditions 39 References 41 2 5GEnablingTechnologies:SmallCells,Full-DuplexCommunications,and Full-DimensionMIMOTechnologies 43 2.1 Introduction 43 2.2 TheRationalefor5GEnablingTechnologies 45 2.3 NetworkDensification 46 2.4 Cloud-BasedRadioAccessNetwork(C-RAN) 49 2.4.1 ResourceManagementBetweenMacrocellsandSmallCells 51 2.4.2 BBU-RRHSwitchingSchemes 53 2.4.3 MobileSmallCells 54 (cid:2) 2.4.4 AutomaticSelf-OrganisingNetwork(SON) 56 (cid:2) 2.5 Cache-EnabledSmall-CellNetworks(CE-SCNs) 57 2.5.1 FileDeliveryPerformanceAnalysisofCE-SCN 58 2.5.2 OutageProbabilityandAverageFileDeliveryRateinCE-SCSystem 59 2.6 Full-Duplex(FD)Communications 61 2.6.1 AnalysisofFDCommunication 63 2.6.2 FDTransmissionBetweenTwoNodes 64 2.6.3 PrinciplesofSelf-Interference 65 2.6.4 TheoreticalExampleAnalysisofAntennaCancellation 67 2.6.5 InfrastructureforFDTransmission 68 2.6.6 Full-DuplexMAC(FD-MAC)Protocol 71 2.7 ReviewofReferenceSignals,AntennaPorts,andChannels 74 2.7.1 DLandULPhysicalChannels 75 2.7.2 DLReferenceSignalsandAntennaPorts 75 2.7.3 ULReferenceSignals 76 2.7.3.1 ULReferenceSignalSequenceGeneration 76 2.7.3.2 DemodulationReferenceSignalforPUSCH 77 2.7.3.3 DemodulationReferenceSignalforPUCCH 78 2.7.3.4 SoundingReferenceSignalSRS 78 2.7.3.5 Random-AccessChannelPreambles 78 2.8 Full-DimensionMIMOTechnology 79 2.8.1 Full-DimensionMIMO(FD-MIMO)Analysis 81 2.8.2 FD-MIMOSystemDesignIssues 82 2.8.3 3GPPDevelopmentof3DModelforFD-MIMOSystem 82 2.8.3.1 AntennaArrayElementsRadiationPatterns 82 2.8.3.2 AntennaConfigurations 83 (cid:2) (cid:2) Contents vii 2.8.3.3 FD-MIMODevelopment 84 2.8.4 BeamformedCSI-RSTransmission 85 2.8.5 CSIFeedbackforFD-MIMOSystems 86 2.9 Summary 88 2.A NotesonMachineLearningAlgorithms 89 2.A.1 TheAlgorithm 89 2.B OutageProbabilityinCE-SCNetworks 91 2.B.1.1 AnalysisofTermi: 91 2.C SignalPowerattheReceiveAntennaafterAntennaCancellationof Self-Interference 94 References 95 FurtherReading 98 3 5GEnablingTechnologies:NetworkVirtualizationandWirelessEnergy Harvesting 99 3.1 Introduction 99 3.2 NetworkSharingandVirtualizationofWirelessResources 100 3.2.1 EarlierNetworkSharing 100 3.2.2 FunctionalDescriptionofNetworkSharingNodes 102 3.2.2.1 UserEquipment(UE)Functions 102 3.2.2.2 RadioNetworkController(RNC)Functions 103 3.2.2.3 EvolvedNodeB(eNB)Functions 103 3.2.2.4 BaseStationController(BSC)Functions 103 (cid:2) 3.2.2.5 MobileSwitchingCentre(MSC)Functions 103 (cid:2) 3.2.2.6 MobilityManagementEntity(MME)Functions 104 3.2.3 SingleBSSharedbyaSetofOperators 104 3.3 EvolvedResourceSharing 107 3.3.1 PrincipleofCellularNetworkEvolvedResourceSharing 109 3.3.2 Single-LevelResourceAllocationAmongOperators 109 3.3.3 OpportunisticSharing-BasedResourceAllocation 112 3.4 NetworkFunctionsVirtualization(NFV) 113 3.4.1 VirtualizedNetworkFunctions 116 3.4.2 PrinciplesoftheNetworkFunctionsVirtualizationInfrastructure(NFVI) 116 3.5 vRANSupportingFronthaul 117 3.5.1 SplittingtheArchitecture 118 3.5.1.1 Downlink(DL) 118 3.5.1.2 Uplink(UL) 118 3.6 VirtualEvolvedPacketCore(vEPC) 119 3.7 VirtualizedSwitches 121 3.8 AuctioninResourceProvision 121 3.9 HierarchicalCombinatorialAuctionModels 122 3.10 Energy-HarvestingTechniques 125 3.10.1 FundamentalsofWirelessEnergyHarvesting 126 3.10.2 WirelessPoweredCommunications 129 3.10.3 Full-DuplexWireless-PoweredCommunicationNetwork 131 3.10.4 WirelessPowerTransferinCellularNetworks 133 3.10.4.1 TheOutageConstraintatBSs 134 3.10.4.2 ThePowerOutageConstraintatPBs 135 3.10.4.3 HybridNetworkMobileswithLargeEnergyStorage 135 (cid:2) (cid:2) viii Contents 3.10.4.4 HybridNetworkMobileswithSmallEnergyStorage 135 3.10.5 HarvestedEnergyCalculation 136 3.10.5.1 EnergyHarvestedfromaFDBS(configuration1) 136 3.10.5.2 EnergyHarvestedfromPBs(configuration2) 137 3.11 IntegratedEnergyandSpectrumHarvestingfor5GCommunications 138 3.12 EnergyandSpectrumHarvestingCooperativeSensingMultipleAccessControl (MAC)Protocol 140 3.13 MillimetreWave(mmWave)EnergyHarvesting 141 3.13.1 mmWaveNetworkModel 141 3.13.2 mmWaveChannelModel 142 3.13.3 AntennaModel 143 3.14 AnalysisofmmWaveEnergy-HarvestingTechnique 144 3.14.1 ConnectedUserCase 145 3.15 Summary 145 References 146 FurtherReading 148 4 5GEnablingTechnologies:NarrowbandInternetofThingsandSmart Cities 151 4.1 IntroductiontotheInternetofThings(IoT) 151 4.2 IoTArchitecture 152 4.2.1 ProvisioningandAuthentication 153 4.2.2 ConfigurationandControl 153 (cid:2) 4.2.3 MonitoringandDiagnostics 153 (cid:2) 4.2.4 SoftwareUpdatesandMaintenance 154 4.3 LayeredIoTArchitecture 154 4.4 IoTSecurityIssues 155 4.5 NarrowbandIoT 155 4.5.1 NB-IoTModesofOperation 155 4.5.2 NB-IoTTransmissionOptions 156 4.5.2.1 DLTransmissionMethod 156 4.5.2.2 ULTransmissionMethod 156 4.6 DLNarrowbandPhysicalChannelsandReferenceSignals 156 4.6.1 DLPhysicalBroadcastChannel(DPBCH) 156 4.6.2 RepetitionCodeSNRGainAnalysis 158 4.6.3 NarrowbandPhysicalDLSharedChannel(NPDSCH)andControlChannel (NPDCCH) 159 4.6.4 NarrowbandReferenceSignal(NRS) 160 4.6.5 NB-IoTPrimarySynchronizationSignal(NPSS) 160 4.6.6 NB-IoTSecondarySynchronizationSignal(NSSS) 163 4.6.7 NarrowbandPositioningReferenceSignal(NPRS) 165 4.7 ULNarrowbandPhysicalChannelsandReferenceSignals 169 4.7.1 NarrowbandPhysicalULSharedChannel(NPUSCH) 169 4.7.2 NarrowbandPhysicalRandom-AccessChannel(NPRACH) 170 4.7.3 DemodulationReferenceSignals 172 4.7.3.1 DMRSSequenceforNPUSCHFormat1 172 4.7.3.2 DMRSSequenceforNPUSCHFormat2 173 4.8 NB-IoTSystemDesign 174 (cid:2) (cid:2) Contents ix 4.8.1 LTESystemSpecifications 174 4.8.2 BandwidthPerspective-EffectiveBW 175 4.8.2.1 CapacityExtensionConsideration 175 4.8.2.2 CoverageExtensionConsideration 176 4.8.3 BatteryUsageEfficiency 177 4.9 SmartCities 179 4.10 EUSmartCityModel 180 4.10.1 SmartEconomy 180 4.10.2 SmartMobility 180 4.10.3 SmartEnvironment 181 4.10.4 SmartPeople 181 4.10.5 SmartLiving 182 4.10.6 SmartGovernance 183 4.11 Summary 184 4.A MinimumTimeRequiredtoTransmitMessageMWhenB→∞ 185 References 186 FurtherReading 188 5 MillimetreWaveMassiveMIMOTechnology 189 5.1 Introduction 189 5.2 CapacityofPoint-to-PointMIMOSystems 190 5.2.1 CapacityofSIMO/MISOLinks 190 5.2.2 CapacityofMIMOLinks 190 (cid:2) 5.3 OutageofPoint-to-PointMIMOLinks 193 (cid:2) 5.4 Diversity-MultiplexingTradeoffs 194 5.5 Multi-User-MIMO(MU-MIMO)Single-CellSystems 195 5.5.1 ULChannelCapacity 196 5.5.2 DLChannelCapacity 196 5.6 Multi-UserMIMOMulti-CellSystemRepresentation 197 5.7 SumCapacityofBroadcastChannels 198 5.7.1 DegradedBC 198 5.7.2 NondegradedGaussianVectorBC 200 5.7.3 MIMOBCSumCapacityUsingDPC 201 5.7.4 DPCSchemeResearchDevelopmentforApplicationintheMIMOBC 205 5.7.5 ReviewoftheDPCSchemeforMassiveMIMOSystems 206 5.8 mmWaveMassiveMIMOSystems 206 5.8.1 Introduction 206 5.8.2 ReciprocityModelforPoint-to-PointLinks 208 5.8.3 ReciprocityAnalysis 208 5.8.4 ReciprocityAnalysisExtensiontoMultipleUsers 209 5.8.5 ReciprocityandPilotContamination 210 5.9 MIMOBeamformingSchemes 210 5.9.1 IntroductiontoBeamforming 210 5.9.2 AnalysisofBeamforming 210 5.10 BFSchemes 212 5.10.1 TheDelayandSumBF 212 5.10.2 NullSteeringBeamformers 213 5.10.3 BeamformerUsingaReferenceSignal 214 (cid:2) (cid:2) x Contents 5.11 mmWaveBFSystems 215 5.11.1 Introduction 215 5.11.2 HybridDigitalandAnalogueBFformmWaveAntennaArrays 216 5.12 MassiveMIMOHardware 221 5.13 mmWaveMarketandChoiceofTechnologies 226 5.14 Summary 227 5.A DerivationofEq.(5.14)forM=3,N=2 229 5.B MUSICAlgorithmUsedinEstimatingtheDirectionofSignalArrival 230 5.B.1 Introduction 230 5.B.2 MUSICAlgorithmforEstimating1DArrayAOAs 230 5.B.3 MUSICAlgorithmforEstimating1DLinearHybridArrayAOAs 233 5.B.4 MUSICAlgorithmforEstimating2DArrayAOAs. 234 References 236 6 mmWavePropagationModelling:AtmosphericGaseousandRain Losses 241 6.1 Introduction 241 6.2 ContemporaryRadioWavePropagationModels 242 6.2.1 AT&TPropagationModel 243 6.2.2 StanfordUniversityInterim(SUI)PropagationModel 244 6.2.3 ModifiedSUIModelformmWavePropagation 245 6.3 AtmosphericGaseousLosses 249 6.3.1 Introduction 249 (cid:2) 6.3.2 AttenuationbyAtmosphericGases 250 (cid:2) 6.3.3 ITURecommendationsforModellingAtmosphericGaseousAttenuation 252 6.3.4 TemperatureandPressure 254 6.3.5 Water-VapourPressure 254 6.4 DryAtmosphereforAttenuationCalculations 256 6.5 CalculationofAtmosphericGaseousAttenuationUsingITU-R Recommendations 256 6.6 RainAttenuationatmmWaveFrequencyBands 257 6.6.1 Introduction 257 6.6.2 ResearchDevelopment 258 6.7 ThePhysicalRain(EXCELL)CapsoniModel 259 6.7.1 ModelCells 260 6.7.2 MonoaxialCellandBiaxialCellModels 261 6.7.3 FittingtheModeltotheLocalMeteorologicalData 261 6.7.4 DevelopmentoftheCapsoniEXCELLModel 263 6.8 ITURecommendationsonRainfallRateConversion 265 6.8.1 Introduction 265 6.8.2 RecommendationsITU–RP.530-17andITU-RP.838-3 266 6.8.2.1 LinearandCircularPolarization 266 6.8.3 RecommendationsITU-RP.1144-6andITU-RP.837-7 269 6.8.4 RecommendationITURP.1510-1 271 6.9 AttenuationfromSnowandHail 272 6.9.1 EMPropagationPropertiesThroughSnow 272 6.9.2 TransmissionModelforIceSlab 277 6.9.3 EmpiricalModelforSnowAttenuation 278 6.9.4 StrongFluctuationTheory 281 (cid:2) (cid:2) Contents xi 6.10 SnowDielectricConstantFormulationUsingStrongFluctuationTheory 281 6.11 Summary 282 6.A BilinearInterpolation 283 References 285 7 mmWavePropagationModelling–Weather,Vegetation,andBuilding MaterialLosses 289 7.1 Introduction 289 7.2 AttenuationDuetoCloudsandFog 290 7.3 TheMicrophysicalModelling 290 7.4 ModifiedGammaDropletsSizeDistribution 292 7.4.1 AnalysisoftheSizeDistribution 292 7.4.2 SkewnessandKurtosisofModifiedGammaDistribution 294 7.5 RayleighandMieScatteringDistributions 297 7.6 ITUEmpiricalModelforCloudsandFogAttenuationCalculation 298 7.7 BuildingMaterialAttenuation 300 7.7.1 PenetrationLossesforVariousBuildingMaterials 300 7.7.2 PenetrationLossesforIndoorObstructionsinanOfficeEnvironmentat 28GHz 301 7.7.3 ThePenetrationLossfortheExterioroftheHouse 301 7.8 ModellingthePenetrationLossforBuildingMaterials 302 7.9 ModellingthePenetrationLossforIndoorEnvironments 302 7.10 AttenuationofPropagatedRadioWavesinVegetation 303 (cid:2) 7.10.1 FoliagePropagationPathModels 303 (cid:2) 7.10.2 ReviewofHorizontalEmpiricalModels 304 7.10.3 WeissbergerMEDVegetationLossModel 304 7.10.4 RecommendationITUVegetationLossModel 305 7.10.5 TheMaximumAttenuation(MA)VegetationLossModel 305 7.10.6 TheModifiedandFittedITU-R(MITU-R)and(FITU-R)VegetationLoss Models 307 7.10.7 TheCOST235Model 308 7.10.8 TheNonzeroGradient(NZG)VegetationLossModel 308 7.10.9 TheDual-Gradient(DG)VegetationLossModel 310 7.10.10 IndoorVegetationAttenuationMeasurement 312 7.11 ReviewofVegetationLossUsingEmpiricalModelsforSlantPropagation Path 312 7.12 MicrophysicalModellingofVegetationAttenuation 315 7.13 AttenuationinVegetationDuetoDiffraction 321 7.14 RecommendationITU-R526-7 321 7.15 PropagationModesConnectedwiththeVegetationFoliage 322 7.15.1 CalculationoftheAttenuationoftheTopDiffractedComponent 323 7.15.2 AttenuationComponentsDuetoSideDiffraction 324 7.15.3 AttenuationoftheGroundReflectionComponent 325 7.15.4 Attenuationofthe‘Through’orScatteredComponent 326 7.15.5 CombinationoftheIndividualAttenuationComponents 326 7.16 RadiativeEnergyTransfer(RET)Theory 327 7.16.1 Introduction 327 7.16.2 RETAttenuationPredictionModel 329 7.16.2.1 ScatteringLossforSlantRadiation 331 (cid:2)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.