Cover Page: i Half title Page: i Title page Page: iii Imprints page Page: iv Dedication Page: v Contents Page: vii Contributors Page: xiv Foreword Page: xvii Acknowledgments Page: xix Acronyms Page: xxii 1 Introduction Page: 1 1.1 Historical background Page: 1 1.1.1 Industrial and technological revolution: from steam engines to the Internet Page: 1 1.1.2 Mobile communications generations: from 1G to 4G Page: 2 1.1.3 From mobile broadband (MBB) to extreme MBB Page: 6 1.1.4 IoT: relation to 5G Page: 6 1.2 From ICT to the whole economy Page: 7 1.3 Rationale of 5G: high data volume, twenty-five billion connected devices and wide requirements Page: 9 1.3.1 Security Page: 11 1.4 Global initiatives Page: 12 1.4.1 METIS and the 5G-PPP Page: 12 1.4.2 China: 5G promotion group Page: 14 1.4.3 Korea: 5G Forum Page: 14 1.4.4 Japan: ARIB 2020 and Beyond Ad Hoc Page: 14 1.4.5 Other 5G initiatives Page: 14 1.4.6 IoT activities Page: 14 1.5 Standardization activities Page: 15 1.5.1 ITU-R Page: 15 1.5.2 3GPP Page: 15 1.5.3 IEEE Page: 16 1.6 Scope of the book Page: 16 References Page: 18 2 5G use cases and system concept Page: 21 2.1 Use cases and requirements Page: 21 2.1.1 Use cases Page: 21 2.1.1.1 Autonomous vehicle control Page: 23 2.1.1.2 Emergency communication Page: 24 2.1.1.3 Factory cell automation Page: 25 2.1.1.4 High-speed train Page: 25 2.1.1.5 Large outdoor event Page: 25 2.1.1.6 Massive amount of geographically spread devices Page: 26 2.1.1.7 Media on demand Page: 26 2.1.1.8 Remote surgery and examination Page: 26 2.1.1.9 Shopping mall Page: 27 2.1.1.10 Smart city Page: 27 2.1.1.11 Stadium Page: 28 2.1.1.12 Teleprotection in smart grid network Page: 28 2.1.1.13 Traffic jam Page: 28 2.1.1.14 Virtual and augmented reality Page: 29 2.1.1.15 Other use cases: two examples Page: 29 2.1.2 Requirements and key performance indicators Page: 30 2.2 5G system concept Page: 31 2.2.1 Concept overview Page: 32 2.2.2 Extreme mobile broadband Page: 34 2.2.2.1 Access to new spectrum and new types of spectrum access Page: 35 2.2.2.2 New radio interface for dense deployments Page: 35 2.2.2.3 Spectral efficiency and advanced antenna systems Page: 35 2.2.2.4 Number of users Page: 36 2.2.2.5 User mobility Page: 36 2.2.2.6 Links to the main enablers Page: 36 2.2.3 Massive machine-type communication Page: 36 2.2.3.1 Links to the main enablers Page: 37 2.2.4 Ultra-reliable machine-type communication Page: 38 2.2.4.1 Links to the main enablers Page: 39 2.2.5 Dynamic radio access network Page: 39 2.2.5.1 Ultra-dense networks Page: 40 2.2.5.2 Moving Networks Page: 41 2.2.5.3 Antenna beams Page: 41 2.2.5.4 Wireless devices as temporary network nodes Page: 41 2.2.5.5 Device-to-device communication Page: 42 2.2.5.6 Activation and deactivation of nodes Page: 42 2.2.5.7 Interference identification and mitigation Page: 42 2.2.5.8 Mobility management Page: 42 2.2.5.9 Wireless backhaul Page: 42 2.2.6 Lean system control plane Page: 43 2.2.6.1 Common system access Page: 43 2.2.6.2 Service-specific signaling Page: 43 2.2.6.3 Control and user plane separation Page: 44 2.2.6.4 Support of different frequency ranges Page: 44 2.2.6.5 Energy performance Page: 44 2.2.7 Localized contents and traffic flows Page: 45 2.2.7.1 Anti-tromboning Page: 45 2.2.7.2 Device-to-device offloading Page: 45 2.2.7.3 Servers and contents close to the radio edge Page: 46 2.2.8 Spectrum toolbox Page: 46 2.2.8.1 Spectrum needs for xMBB Page: 47 2.2.8.2 Spectrum needs for mMTC Page: 47 2.2.8.3 Spectrum needs for uMTC Page: 47 2.2.8.4 Properties of the spectrum toolbox Page: 47 2.3 Conclusions Page: 48 References Page: 48 3 The 5G architecture Page: 50 3.1 Introduction Page: 50 3.1.1 NFV and SDN Page: 50 3.1.2 Basics about RAN architecture Page: 53 3.2 High-level requirements for the 5G architecture Page: 56 3.3 Functional architecture and 5G flexibility Page: 57 3.3.1 Functional split criteria Page: 58 3.3.2 Functional split alternatives Page: 59 3.3.3 Functional optimization for specific applications Page: 61 3.3.4 Integration of LTE and new air interface to fulfill 5G requirements Page: 63 Inter-connected core networks or a common core network Page: 63 Common physical layer (PHY) Page: 64 Common medium access control (MAC) Page: 65 Common RLC Page: 65 Common PDCP/radio resource control (RRC) Page: 65 3.3.5 Enhanced Multi-RAT coordination features Page: 66 Control plane diversity Page: 66 Fast control plane switching Page: 66 User plane aggregation Page: 67 Fast user plane switching Page: 67 Lean by help of LTE Page: 67 3.4 Physical architecture and 5G deployment Page: 67 3.4.1 Deployment enablers Page: 67 3.4.2 Flexible function placement in 5G deployments Page: 70 3.4.2.1 Wide-area coverage with optical fiber deployment Page: 73 3.4.2.2 Wide-area coverage with heterogeneous backhaul Page: 73 3.4.2.3 Local-area stadium Page: 74 3.5 Conclusions Page: 74 References Page: 75 4 Machine-type communications Page: 77 4.1 Introduction Page: 77 4.1.1 Use cases and categorization of MTC Page: 77 4.1.1.1 The general use case of low-rate MTC Page: 77 4.1.1.2 Use case: the connected car Page: 78 4.1.1.3 Use case: the smart grid Page: 79 4.1.1.4 Use case: factory cell automation Page: 79 4.1.1.5 Categorization of MTC Page: 80 4.1.2 MTC requirements Page: 80 4.1.2.1 Massive MTC Page: 80 4.1.2.2 Ultra-reliable MTC Page: 81 4.2 Fundamental techniques for MTC Page: 82 4.2.1 Data and control for short packets Page: 83 4.2.2 Non-orthogonal access protocols Page: 85 4.3 Massive MTC Page: 86 4.3.1 Design principles Page: 86 4.3.2 Technology components Page: 86 4.3.2.1 Features for low device complexity Page: 86 4.3.2.2 Features for service flexibility Page: 87 4.3.2.3 Features for coverage extension Page: 88 4.3.2.4 Features for long battery lifetime Page: 89 4.3.2.5 Features for scalability and capacity Page: 91 4.3.3 Summary of mMTC features Page: 94 4.4 Ultra-reliable low-latency MTC Page: 94 4.4.1 Design principles Page: 94 4.4.2 Technology components Page: 96 4.4.2.1 Features for reliable low latency Page: 96 4.4.2.2 Feature for reliability: availability indication Page: 98 4.4.2.3 Features enabled by D2D communications Page: 99 4.4.3 Summary of uMTC features Page: 101 4.5 Conclusions Page: 101 References Page: 103 5 Device-to-device (D2D) communications Page: 107 5.1 D2D: from 4G to 5G Page: 107 5.1.1 D2D standardization: 4G LTE D2D Page: 109 5.1.1.1 D2D synchronization Page: 109 5.1.1.2 D2D communication Page: 110 5.1.1.3 D2D discovery Page: 111 5.1.2 D2D in 5G: research challenges Page: 112 5.2 Radio resource management for mobile broadband D2D Page: 113 5.2.1 RRM techniques for mobile broadband D2D Page: 113 5.2.2 RRM and system design for D2D Page: 114 5.2.3 5G D2D RRM concept: an example Page: 115 5.2.3.1 Flexible uplink and downlink TDD concept for D2D Page: 116 5.2.3.2 Decentralized and centralized schedulers Page: 117 5.2.3.3 Mode selection Page: 117 5.2.3.4 Performance analysis Page: 118 5.3 Multi-hop D2D communications for proximity and emergency services Page: 119 5.3.1 National security and public safety requirements in 3GPP and METIS Page: 120 5.3.2 Device discovery without and with network assistance Page: 122 5.3.3 Network-assisted multi-hop D2D communications Page: 122 5.3.4 Radio resource management for multi-hop D2D Page: 123 5.3.4.1 Mode selection for proximity communications Page: 124 5.3.4.2 Mode selection for range extension Page: 124 5.3.5 Performance of D2D communications in the proximity communications scenario Page: 125 5.4 Multi-operator D2D communication Page: 127 5.4.1 Multi-operator D2D discovery Page: 127 5.4.2 Mode selection for multi-operator D2D Page: 128 5.4.2.1 Mode selection algorithm Page: 129 5.4.3 Spectrum allocation for multi-operator D2D Page: 129 5.4.3.1 Spectrum allocation algorithm Page: 130 5.4.3.2 Numerical example Page: 131 5.5 Conclusions Page: 133 References Page: 134 6 Millimeter wave communications Page: 137 6.1 Spectrum and regulations Page: 137 6.2 Channel propagation Page: 138 6.3 Hardware technologies for mmW systems Page: 139 6.3.1 Device technology Page: 139 6.3.2 Antennas Page: 142 6.3.3 Beamforming architecture Page: 143 6.4 Deployment scenarios Page: 144 6.5 Architecture and mobility Page: 146 6.5.1 Dual connectivity Page: 147 6.5.2 Mobility Page: 147 6.5.2.1 Phantom cell Page: 147 6.5.2.2 Terminal-specific serving cluster Page: 147 6.6 Beamforming Page: 149 6.6.1 Beamforming techniques Page: 149 6.6.2 Beam finding Page: 150 6.6.2.1 Linear beam scan Page: 150 6.6.2.2 Tree scan Page: 151 6.6.2.3 Random excitation Page: 151 6.7 Physical layer techniques Page: 152 6.7.1 Duplex scheme Page: 152 6.7.2 Transmission schemes Page: 152 6.8 Conclusions Page: 155 References Page: 155 7 The 5G radio-access technologies Page: 158 7.1 Access design principles for multi-user communications Page: 159 7.1.1 Orthogonal multiple-access systems Page: 160 7.1.1.1 Frequency division multiple-access systems Page: 160 7.1.1.2 Time division multiple-access systems Page: 161 7.1.1.3 Orthogonal frequency division multiple-access systems Page: 162 7.1.2 Spread spectrum multiple-access systems Page: 164 7.1.2.1 Frequency hop-code division multiple-access systems Page: 164 7.1.2.2 Direct sequence-code division multiple-access systems Page: 164 7.1.3 Capacity limits of multiple-access methods Page: 164 7.1.3.1 The multiple-access channel (uplink) Page: 165 7.1.3.2 The broadcast channel (downlink) Page: 167 7.2 Multi-carrier with filtering: a new waveform Page: 169 7.2.1 Filter-bank based multi-carrier Page: 169 7.2.1.1 FBMC: An enabler for a flexible air interface design Page: 172 7.2.1.2 Solutions for practical challenges Page: 174 7.2.2 Universal filtered OFDM Page: 175 7.3 Non-orthogonal schemes for efficient multiple access Page: 178 7.3.1 Non-orthogonal multiple access (NOMA) Page: 179 7.3.2 Sparse code multiple access (SCMA) Page: 181 7.3.3 Interleave division multiple access (IDMA) Page: 182 7.4 Radio access for dense deployments Page: 184 7.4.1 OFDM numerology for small-cell deployments Page: 186 7.4.1.1 Harmonized OFDM and scalable numerology Page: 186 7.4.1.2 OFDM time numerology Page: 186 7.4.1.3 OFDM frequency numerology Page: 187 7.4.2 Small-cell sub-frame structure Page: 187 7.4.2.1 Main design principles for small-cell optimized sub-frame structure Page: 188 7.4.2.2 Control part design principles Page: 189 7.4.2.3 Sub-frame structure properties and achieved gains Page: 189 7.4.2.4 Self-backhauling and multi-antenna aspects Page: 191 7.5 Radio access for V2X communication Page: 192 7.5.1 Medium access control for nodes on the move Page: 192 7.6 Radio access for massive machine-type communication Page: 194 7.6.1 The massive access problem Page: 195 7.6.1.1 LTE / LTE-A RACH limitations Page: 195 7.6.1.2 Signaling/control overhead for mMTC Page: 196 7.6.1.3 KPIs and methodology for 5G performance Page: 197 7.6.2 Extending access reservation Page: 198 7.6.3 Direct random access Page: 199 7.7 Conclusions Page: 201 References Page: 202 8 Massive multiple-input multiple-output (MIMO) systems Page: 208 8.1 Introduction Page: 208 8.1.1 MIMO in LTE Page: 210 8.2 Theoretical background Page: 211 8.2.1 Single user MIMO Page: 212 8.2.2 Multi-user MIMO Page: 215 8.2.2.1 Uplink channel Page: 215 8.2.2.2 Downlink channel Page: 216 8.2.3 Capacity of massive MIMO: a summary Page: 217 8.3 Pilot design for massive MIMO Page: 217 8.3.1 The pilot-data trade-off and impact of CSI Page: 218 8.1.1.1 Impact of channel state information errors on the throughput of massive MIMO systems Page: 219 8.3.2 Techniques to mitigate pilot contamination Page: 220 8.3.2.1 Pilot power control based on open loop path loss compensation Page: 220 8.3.2.2 Coded random access in massive MIMO systems Page: 221 Uplink Page: 223 Downlink Page: 224 8.4 Resource allocation and transceiver algorithms for massive MIMO Page: 225 8.4.1 Decentralized coordinated transceiver design for massive MIMO Page: 225 8.4.1.1 System model Page: 226 8.4.1.2 Performance results Page: 227 8.4.2 Interference clustering and user grouping Page: 228 8.4.2.1 Performance results Page: 231 8.5 Fundamentals of baseband and RF implementations in massive MIMO Page: 233 8.5.1 Basic forms of massive MIMO implementation Page: 233 8.5.2 Hybrid fixed BF with CSI-based precoding (FBCP) Page: 235 8.5.2.1 Performance of FBCP Page: 235 8.5.3 Hybrid beamforming for interference clustering and user grouping Page: 238 8.5.3.1 Performance of hybrid BF for interference mitigation Page: 239 8.6 Channel models Page: 241 8.7 Conclusions Page: 242 References Page: 242 9 Coordinated multi-point transmission in 5G Page: 248 9.1 Introduction Page: 248 9.2 JT CoMP enablers Page: 250 9.2.1 Channel prediction Page: 252 9.2.2 Clustering and interference floor shaping Page: 253 9.2.3 User scheduling and precoding Page: 257 9.2.4 Interference mitigation framework Page: 257 9.2.5 JT CoMP in 5G Page: 258 9.3 JT CoMP in conjunction with ultra-dense networks Page: 259 9.4 Distributed cooperative transmission Page: 260 9.4.1 Decentralized precoding/filtering design with local CSI Page: 261 9.4.1.1 Performance Page: 263 9.4.2 Interference alignment Page: 265 9.4.2.1 Multi-user inter-cell interference alignment Page: 265 9.4.2.2 Performance Page: 267 9.5 JT CoMP with advanced receivers Page: 267 9.5.1 Dynamic clustering for JT CoMP with multiple antenna UEs Page: 268 9.5.1.1 Performance of dynamic clustering Page: 269 9.5.2 Network-assisted interference cancellation Page: 271 9.6 Conclusions Page: 272 References Page: 273 10 Relaying and wireless network coding Page: 277 10.1 The role of relaying and network coding in 5G wireless networks Page: 277 10.1.1 The revival of relaying Page: 278 10.1.2 From 4G to 5G Page: 279 10.1.3 New relaying techniques for 5G Page: 279 10.1.4 Key applications in 5G Page: 281 10.2 Multi-flow wireless backhauling Page: 283 10.2.1 Coordinated direct and relay (CDR) transmission Page: 285 10.2.2 Four-way relaying (FWR) Page: 287 10.2.3 Wireless-emulated wire (WEW) for backhaul Page: 288 10.3 Highly flexible multi-flow relaying Page: 290 10.3.1 Basic idea of multi-flow relaying Page: 290 10.3.2 Achieving high throughput for 5G Page: 293 10.3.3 Performance evaluation Page: 294 10.4 Buffer-aided relaying Page: 295 10.4.1 Why buffers? Page: 295 10.4.2 Relay selection Page: 296 10.4.3 Handling inter-relay interference Page: 299 10.4.4 Extensions Page: 299 10.5 Conclusions Page: 299 References Page: 300 11 Interference management, mobility management, and dynamic reconfiguration Page: 303 11.1 Network deployment types Page: 304 11.1.1 Ultra-dense network or densification Page: 304 11.1.2 Moving networks Page: 305 11.1.3 Heterogeneous networks Page: 306 11.2 Interference management in 5G Page: 306 11.2.1 Interference management in UDNs Page: 307 11.2.1.1 Performance of UDNs using dynamic TDD Page: 308 11.2.2 Interference management for moving relay nodes Page: 310 11.2.2.1 Performance of moving relay nodes Page: 311 11.2.3 Interference cancelation Page: 313 11.3 Mobility management in 5G Page: 314 11.3.1 User equipment-controlled versus network-controlled handover Page: 315 11.3.2 Mobility management in heterogeneous 5G networks Page: 317 11.3.2.1 Fingerprints coverage for multi-RAT and multi-layer environments Page: 318 11.3.2.2 D2D-aware handover Page: 318 11.3.2.3 Handover for moving relay nodes Page: 319 11.3.3 Context awareness for mobility management Page: 320 11.3.3.1 Exploitation of location information for mobility management Page: 320 11.4 Dynamic network reconfiguration in 5G Page: 323 11.4.1 Energy savings through control/user plane decoupling Page: 323 11.4.2 Flexible network deployment based on moving networks Page: 326 11.5 Conclusions Page: 330 References Page: 331 12 Spectrum Page: 336 12.1 Introduction Page: 336 12.1.1 Spectrum for 4G Page: 337 12.1.2 Spectrum challenges in 5G Page: 339 12.2 5G spectrum landscape and requirements Page: 341 12.2.1 Bandwidth requirements Page: 343 12.3 Spectrum access modes and sharing scenarios Page: 345 12.4 5G spectrum technologies Page: 346 12.4.1 Spectrum toolbox Page: 346 12.4.2 Main technology components Page: 347 12.5 Value of spectrum for 5G: a techno-economic perspective Page: 349 12.6 Conclusions Page: 352 Spectrum requirements Page: 352 Types of spectrum Page: 352 Licensing Page: 353 References Page: 353 13 The 5G wireless propagation channel models Page: 357 13.1 Introduction Page: 357 13.2 Modeling requirements and scenarios Page: 358 13.2.1 Channel model requirements Page: 358 13.2.1.1 Spectrum Page: 359 13.2.1.2 Antenna Page: 359 13.2.1.3 System Page: 360 13.2.1.4 Additional requirements Page: 361 13.2.1.5 Summary of channel model requirements Page: 361 13.2.2 Propagation scenarios Page: 361 13.3 The METIS channel models Page: 362 13.3.1 Map-based model Page: 363 13.3.1.1 General description Page: 363 13.3.1.2 Creation of the environment Page: 364 13.3.1.3 Determination of propagation pathways Page: 365 13.3.1.4 Determination of propagation channel matrices Page: 365 Diffracted pathways by Berg recursive model Page: 366 Scattering and blocking objects Page: 367 13.3.1.5 Composing radio channel transfer function Page: 370 13.3.2 Stochastic model Page: 371 13.3.2.1 Path loss Page: 371 13.3.2.2 Large-scale parameters based on sum-of-sinusoids Page: 373 13.3.2.3 mm-Wave parameterization Page: 374 13.3.2.4 Direct sampling of Laplacian shape Page: 376 13.3.2.5 Dynamic modeling and spherical waves Page: 377 13.4 Conclusions Page: 378 References Page: 379 14 Simulation methodology Page: 381 14.1 Evaluation methodology Page: 381 14.1.1 Performance indicators Page: 381 14.1.1.1 User throughput Page: 381 14.1.1.2 Application data rate Page: 382 14.1.1.3 Cell throughput Page: 382 14.1.1.4 Spectral efficiency Page: 382 14.1.1.5 Traffic volume Page: 382 14.1.1.6 Error rate Page: 382 14.1.1.7 Delay Page: 383 14.1.1.8 Network energy performance Page: 383 14.1.1.9 Cost Page: 383 14.1.2 Channel simplifications Page: 383 14.1.2.1 Small-scale modeling Page: 383 14.1.2.2 Large-scale modeling when base station is on the rooftop level Page: 384 14.1.2.3 Large-scale modeling when base station is much below the mean building height Page: 386 14.2 Calibration Page: 387 14.2.1 Link-level calibration Page: 387 14.2.1.1 Calibration step 1 – OFDM modulation Page: 388 14.2.1.2 Calibration step 2 – channel coding Page: 388 14.2.1.3 Calibration step 3 – SIMO configuration Page: 388 14.2.1.4 Calibration step 4 – MIMO configuration for transmit diversity Page: 390 14.2.1.5 Calibration step 5 – MIMO configuration for spatial multiplexing Page: 390 14.2.1.6 Calibration step 6 – uplink Page: 390 14.2.1.7 Calibration step 7 – 3GPP minimum requirements Page: 390 14.2.1.8 Calibration step 8 – multi-link-level calibration Page: 391 14.2.2 System-level calibration Page: 391 14.2.2.1 Calibration phase 1 – LTE technology Page: 391 14.2.2.2 Calibration phase 2 – LTE-Advanced with basic deployment Page: 392 14.3 New challenges in the 5G modeling Page: 392 14.3.1 Real scenarios Page: 392 14.3.2 New waveforms Page: 394 14.3.3 Massive MIMO Page: 395 14.3.4 Higher frequency bands Page: 395 14.3.5 Device-to-device link Page: 396 14.3.6 Moving networks Page: 397 14.4 Conclusions Page: 397 References Page: 398 Index Page: 401
Description: