ebook img

3D AND 4D PRINTING IN BIOMEDICAL APPLICATIONS: process engineering and additive manufacturing PDF

479 Pages·2019·12.2 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview 3D AND 4D PRINTING IN BIOMEDICAL APPLICATIONS: process engineering and additive manufacturing

3Dand4DPrintinginBiomedicalApplications 3D and 4D Printing in Biomedical Applications ProcessEngineeringandAdditiveManufacturing Editedby MohammedManiruzzaman Editor AllbookspublishedbyWiley-VCH arecarefullyproduced.Nevertheless, Dr.MohammedManiruzzaman authors,editors,andpublisherdonot UniversityofSussex warranttheinformationcontainedin SchoolofLifeSciences thesebooks,includingthisbook,to BN19QGBrighton befreeoferrors.Readersareadvised UnitedKingdom tokeepinmindthatstatements,data, illustrations,proceduraldetailsorother Cover itemsmayinadvertentlybeinaccurate. 3DPrinter©iStock.com/AzmanL HumanAnatomy©courtesyofLuciano LibraryofCongressCardNo.: PaulinoSilva&createdbyEllaMaru appliedfor Studio BritishLibraryCataloguing-in-Publication Data Acataloguerecordforthisbookis availablefromtheBritishLibrary. Bibliographicinformationpublishedby theDeutscheNationalbibliothek TheDeutscheNationalbibliotheklists thispublicationintheDeutsche Nationalbibliografie;detailed bibliographicdataareavailableonthe Internetat<http://dnb.d-nb.de>. ©2019Wiley-VCHVerlagGmbH& Co.KGaA,Boschstr.12,69469 Weinheim,Germany Allrightsreserved(includingthoseof translationintootherlanguages).No partofthisbookmaybereproducedin anyform–byphotoprinting, microfilm,oranyothermeans–nor transmittedortranslatedintoa machinelanguagewithoutwritten permissionfromthepublishers. Registerednames,trademarks,etc.used inthisbook,evenwhennotspecifically markedassuch,arenottobe consideredunprotectedbylaw. PrintISBN:978-3-527-34443-7 ePDFISBN:978-3-527-81367-4 ePubISBN:978-3-527-81369-8 oBookISBN:978-3-527-81370-4 Typesetting SPiGlobal,Chennai,India PrintingandBinding Printedonacid-freepaper 10 9 8 7 6 5 4 3 2 1 Thebondbetweenfatheranddaughter happensinstantly,startingrightatbirth. Whenafatherfirstlayseyesonhislittlegirl, Heloveshermorethananythingonthisearth. (H.Twining) Tomywonderfullittledaughter ShahroozMyreenZaman vii Contents Preface xvii 1 3D/4DPrintinginAdditiveManufacturing:Process EngineeringandNovelExcipients 1 ChristianMuehlenfeldandSimonA.Roberts 1.1 Introduction 1 1.2 TheProcessof3Dand4DPrintingTechnology 1 1.3 3D/4DPrintingforBiomedicalApplications 2 1.4 SmartorResponsiveMaterialsfor4DBiomedicalPrinting 3 1.5 Classificationof3Dand4DPrintingTechnologies 7 1.5.1 FusedFilamentFabrication(FFF)–Extrusion-BasedSystems 7 1.5.2 PowderBedPrinting(PBP)–Droplet-BasedSystems 10 1.5.3 Stereolithographic(SLA)Printing–Resin-BasedSystems 12 1.5.4 SelectiveLaserSintering(SLS)Printing–Laser-BasedSystems 15 1.6 ConclusionsandPerspectives 17 References 17 2 3Dand4DPrintingTechnologies:InnovativeProcess EngineeringandSmartAdditiveManufacturing 25 DeckTan,AliNokhodchi,andMohammedManiruzzaman 2.1 Introduction 25 2.2 Typesof3DPrintingTechnologies 25 2.2.1 Stereolithographic3DPrinting(SLA) 25 2.2.2 Powder-Based3DPrinting 26 2.2.3 SelectiveLaserSintering(SLS) 27 2.2.4 FusedDepositionModeling(FDM) 28 2.2.5 SemisolidExtrusion(EXT)3DPrinting 29 2.2.6 ThermalInkjetPrinting 30 2.3 FDM3DPrintingTechnology 31 2.3.1 FDM3DPrintingApplicationsinUnitDoseFabricationsand MedicalImplants 33 2.4 HotMeltExtrusionTechniquetoProduce3DPrintingPolymeric Filaments 34 viii Contents 2.5 SmartMedicalImplantsIntegratedwithSensors 35 2.5.1 ExamplesofMedicalImplantswithSensors 36 2.6 4DPrintingandFuturePerspectives 38 2.6.1 4DPrintingandItsTransitioninMaterialFabrication 38 2.6.2 ShapeMemoryorStimuli-ResponsiveMechanismof4DPrinting 39 2.6.3 FactorsAffecting4DPrinting 40 2.6.3.1 Humidity-ResponsiveMaterials 40 2.6.3.2 Temperatures 41 2.6.3.3 ElectronicandMagneticStimuli 43 2.6.3.4 Light 45 2.6.4 FuturePerspectivesof4DPrinting 45 2.7 RegulatoryAspects 46 2.8 Conclusions 48 References 48 ® 3 3DPrinting:ACaseofZipDose Technology–World’sFirst3D PrintingPlatformtoObtainFDAApprovalforaPharmaceutical Product 53 ThomasG.WestandThomasJ.Bradbury 3.1 Introduction 53 3.2 Terminology 53 3.3 HistoricalContextforThisFormof3DPrinting 54 ® 3.4 ZipDose Technology 56 3.5 3DPrintingMachinesandPharmaceuticalProcessDesign 60 3.5.1 Overview 60 3.5.2 GeneralizedProcessinthePharmaceuticalContext 62 3.5.3 Exemplary3DPMachineDesigns 65 ® 3.6 DevelopmentofSPRITAM 70 3.6.1 ProductConceptandNeed 70 3.6.2 RegulatoryApproach 71 3.6.3 IntroductionoftheTechnologytoFDA 72 3.6.4 TargetProductProfile 72 3.6.5 SynopsisofFormulationandClinicalDevelopment 73 3.7 Conclusion 76 Acknowledgments 77 References 77 4 ManufacturingofBiomaterialsviaa3DPrintingPlatform 81 PatrickThayer,HectorMartinez,andErikGatenholm 4.1 AdditiveManufacturingandBioprinting 81 4.2 Bioinks 83 4.2.1 PrintabilityControl–BioinkCompositionandEnvironmental Factors 83 4.2.2 MechanismsforFilamentFormationandStability 85 4.3 3DBioprintingSystems 87 4.3.1 MultifacetedSystems 88 Contents ix 4.3.2 MajorComponents 88 4.3.3 PneumaticPrinthead 89 4.3.4 MechanicalDisplacementPrinthead 89 4.3.5 InkjetPrinthead 91 4.3.6 HeatedandCooledPrintheads 91 4.3.7 High-TemperatureExtruder 92 4.3.8 MultimaterialPrinthead 92 4.3.9 HeatedandCooledPrintbed 94 4.3.10 CleanChamberTechnology 94 4.3.11 Video-CapturePrintheadandSensors 94 4.3.12 IntegratedIntelligence 95 4.4 Applications 95 4.4.1 InternalArchitecture 96 4.4.2 IntegratedVascularNetworksandMicrostructurePatterning 98 4.4.3 PersonalizedMedicine 99 4.5 StepsNecessaryforBroaderApplication 101 References 102 5 Bioscaffolding:ANewInnovativeFabricationProcess 113 RaniaAbdelgaber,DavidKilian,andHendrikFiehn 5.1 Introduction:FromBioscaffoldingtoBioprinting 113 5.2 Scaffolding 115 5.2.1 PropertiesofScaffolds 115 5.2.2 BioprintersvsCommon3DPrinters:ApproachesforExtrusionof Polymers 116 5.2.3 ComparingCellSeedingTechniquesto3DBioprintingorCell-Laden Hydrogels 117 5.2.3.1 FromPrintingtoBioprinting 117 5.2.3.2 ApproachesofStabilizingPrintedConstructs 118 5.2.4 Examples/ApplicationsofCell-SeededScaffolds 119 5.2.5 DataProcessingof3DCADDataforBioscaffolds 119 5.3 BioprintedScaffolds 120 5.3.1 Bioinks 120 5.3.2 ToolsforMultimaterialPrinting 123 5.3.3 MultimaterialScaffold 124 5.3.4 Core–ShellScaffolds 126 5.3.5 AdditionalTechnicalEquipment 128 5.3.6 PiezoelectricPipettingTechnology 128 5.3.7 UsageofPiezoelectricInkjetTechnologywithBioscaffolds 130 5.4 ApplicationsofBioscaffolderandBioprintingSystems 132 5.4.1 IndividualizedImplantsandTissueConstructs 132 5.4.2 GreenBioprinting 133 5.4.3 ChallengesforClinicalApplicationsofBioprintedScaffoldsinTissue andOrganEngineering 134 5.4.4 4DPrinting 135 5.5 Conclusion 137 References 137 x Contents 6 Potentialof3DPrintinginPharmaceuticalDrugDeliveryand Manufacturing 145 MarenK.Preis 6.1 Introduction 145 6.2 PharmaceuticalDrugDelivery 145 6.3 ConventionalManufacturingvs3DPrinting 146 6.4 AdvancedApplicationsforImprovedDrugDelivery 148 6.5 Instrumentations 148 6.6 Locationof3DPrintingManufacturing 149 6.6.1 PharmaceuticalIndustry 149 6.6.2 AtthePointofCare 150 6.6.3 Print-at-Home 150 6.7 RegulatoryAspects 151 6.8 Summary 151 References 151 7 Emerging3DPrintingTechnologiestoDevelopNovel PharmaceuticalFormulations 153 ChristosI.Gioumouxouzis,GeorgiosK.Eleftheriadis,and DimitriosG.Fatouros 7.1 Introduction 153 7.2 FDM3DPrinting 153 7.3 Pressure-AssistedMicrosyringe 173 7.4 SLA3DPrinting 175 7.5 PowderBed3DPrinting 175 7.6 SLS3DPrinting 178 7.7 3DInkjetPrinting 179 7.8 Conclusions 180 References 180 8 ModulatingDrugReleasefrom3DPrintedPharmaceutical Products 185 JulianQuodbach 8.1 Introduction 185 8.2 PharmaceuticallyUsed3DPrintingProcessesand Techniques 186 8.2.1 ProcessFlowof3DPrintingProcesses 186 8.2.2 Inkjet-BasedPrintingTechnologies 187 8.2.3 Extrusion-BasedPrintingTechniques 187 8.2.4 Laser-BasedTechniques 188 8.3 ModifyingtheDrugReleaseProfilefrom3DPrintedDosage Forms 189 8.3.1 ApproachestoModifytheDrugRelease 189 8.3.2 ModifyingtheDrugReleasebyFormulationVariation 189 8.3.2.1 FusedFilamentFabrication 189 8.3.2.2 OtherPrintingTechniques 194 Contents xi 8.3.3 ManipulatingtheDosageFormGeometryasaMeanstoModify APIRelease 195 8.3.3.1 FusedFilamentFabrication 196 8.3.3.2 Drop-on-DropPrinting 197 8.3.4 DissolutionControlviaDirectedDiffusionand Compartmentalization 199 8.3.4.1 Drop-on-PowderPrinting 199 8.3.4.2 FusedFilamentFabrication 202 8.3.4.3 PrintingwithPressure-AssistedMicrosyringes 205 8.4 Conclusion 206 References 207 9 NovelExcipientsandMaterialsUsedinFDM3DPrintingof PharmaceuticalDosageForms 211 MingLu 9.1 Introduction 211 9.2 BiodegradablePolyester 219 9.2.1 PolylacticAcid(PLA) 219 9.2.2 Poly(ε-caprolactone)(PCL) 220 9.3 PolyvinylPolymer 221 9.3.1 PolyvinylAlcohol(PVA) 221 9.3.2 EthyleneVinylAcetate(EVA) 223 9.3.3 Polyvinylpyrrolidone(PVP) 224 9.3.4 Soluplus 225 9.4 CellulosicPolymers 225 9.4.1 HydroxypropylCellulose(HPC) 226 9.4.2 HydroxypropylMethylcellulose(HPMC) 227 9.4.3 HydroxypropylMethylcelluloseAcetateSuccinate(HPMCAS) 228 9.5 Polymethacrylate-BasedPolymers 229 9.5.1 EudragitRL/RS 230 9.5.2 EudragitL100-55 231 9.5.3 EudragitE100 232 9.6 Conclusion 233 References 234 10 RecentAdvancesofNovelMaterialsfor3D/4DPrintingin BiomedicalApplications 239 JasimAhmed 10.1 Introduction 239 10.2 Materialsfor3DP 240 10.3 Rheology 241 10.4 Ceramicsfor3DPrinting 241 10.5 PolymersandBiopolymersfor3DPrinting 243 10.5.1 Polylactide(PLA) 245 10.5.2 Poly(ε-caprolactone)(PCL) 245 10.5.3 HyaluronicAcid 245

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.