ebook img

2D Object Detection and Recognition PDF

325 Pages·2005·7.21 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview 2D Object Detection and Recognition

2D Object Detection and Recognition Models,Algorithms,and Networks Yali Amit amit-79020 book May20,2002 13:3 2D Object Detection and Recognition i This Page Intentionally Left Blank amit-79020 book May20,2002 13:3 YaliAmit 2D Object Detection and Recognition Models,Algorithms,andNetworks TheMITPress Cambridge,Massachusetts London,England iii amit-79020 book May20,2002 13:3 ©2002MassachusettsInstituteofTechnology Allrightsreserved.Nopartofthisbookmaybereproducedinanyformbyanyelectronicor mechanicalmeans(includingphotocopying,recording,orinformationstorageandretrieval) withoutpermissioninwritingfromthepublisher. ThisbookwassetinTimesRomanbyInteractiveCompositionCorporationandwasprinted andboundintheUnitedStatesofAmerica. LibraryofCongressCataloging-in-PublicationData Amit,Yali. 2Dobjectdetectionandrecognition:models,algorithms,andnetworks/YaliAmit. p.cm. Includesbibliographicalreferences. ISBN0-262-01194-8(hc.:alk.paper) 1.Computervision. I.Title. TA1634.A452002 006.3(cid:2)7–dc21 2002016508 iv amit-79020 book May20,2002 13:3 ToGranite,Yotam,andInbal v This Page Intentionally Left Blank amit-79020 book May20,2002 13:3 Contents Preface xi Acknowledgments xv 1 Introduction 1 1.1 Low-LevelImageAnalysisandBottom-upSegmentation 1 1.2 ObjectDetectionwithDeformable-TemplateModels 3 1.3 DetectionofRigidObjects 5 1.4 ObjectRecognition 8 1.5 SceneAnalysis:MergingDetectionandRecognition 10 1.6 NeuralNetworkArchitectures 12 2 DetectionandRecognition:OverviewofModels 13 2.1 ABayesianApproachtoDetection 13 2.2 OverviewofObject-DetectionModels 18 2.3 ObjectRecognition 25 2.4 SceneAnalysis:CombiningDetectionandRecognition 27 2.5 NetworkImplementations 28 3 1DModels:DeformableContours 31 3.1 Inside-OutsideModel 31 3.2 AnEdge-BasedDataModel 40 3.3 Computation 41 vii amit-79020 book May20,2002 13:3 viii Contents 3.4 JointEstimationoftheCurveandtheParameters 48 3.5 BibliographicalNotesandDiscussion 51 4 1DModels:DeformableCurves 57 4.1 StatisticalModel 58 4.2 Computation:DynamicProgramming 63 4.3 GlobalOptimizationonaTree-StructuredPrior 67 4.4 BibliographicalNotesandDiscussion 78 5 2DModels:DeformableImages 81 5.1 StatisticalModel 83 5.2 ConnectiontotheDeformable-ContourModel 88 5.3 Computation 88 5.4 BernoulliDataModel 93 5.5 Linearization 97 5.6 ApplicationstoBrainMatching 101 5.7 BibliographicalNotesandDiscussion 104 6 SparseModels:Formulation,Training,andStatisticalProperties 109 6.1 FromDeformableModelstoSparseModels 111 6.2 StatisticalModel 113 6.3 LocalFeatures:ComparisonArrays 118 6.4 LocalFeatures:EdgeArrangements 121 6.5 LocalFeatureStatistics 128 7 DetectionofSparseModels:DynamicProgramming 139 7.1 ThePriorModel 139 7.2 Computation:DynamicProgramming 142 7.3 DetectingPose 147 7.4 BibliographicalNotesandDiscussion 148 8 DetectionofSparseModels:Counting 151 8.1 DetectingCandidateCenters 153 8.2 ComputingPoseandInstantiationParameters 156 amit-79020 book May20,2002 13:3 ix Contents 8.3 DensityofCandidateCentersandFalsePositives 159 8.4 FurtherAnalysisofaDetection 160 8.5 Examples 163 8.6 BibliographicalNotesandDiscussion 176 9 ObjectRecognition 181 9.1 ClassificationTrees 185 9.2 ObjectRecognitionwithTrees 192 9.3 RelationalArrangements 197 9.4 Experiments 201 9.5 WhyMultipleTreesWork 209 9.6 BibliographicalNotesandDiscussion 212 10 SceneAnalysis:MergingDetectionandRecognition 215 10.1 ClassificationofChessPiecesinGray-LevelImages 216 10.2 DetectingandClassifyingCharacters 224 10.3 ObjectClustering 228 10.4 BibliographicalNotesandDiscussion 231 11 NeuralNetworkImplementations 233 11.1 BasicNetworkArchitecture 234 11.2 HebbianLearning 237 11.3 LearninganObjectModel 238 11.4 LearningClassifiers 241 11.5 Detection 248 11.6 GatingandOff-CenterRecognition 250 11.7 BiologicalAnalogies 252 11.8 BibliographicalNotesandDiscussion 255 12 Software 259 12.1 SettingThingsUp 259 12.2 ImportantDataStructures 262 12.3 LocalFeatures 265 12.4 DeformableModels 267

Description:
Yali Amit. 2D Object Detection and Recognition. Models, Algorithms, and Sparse Models: Formulation, Training, and Statistical Properties . mechanism exists for isolating the individual objects from the more-complex image the basic ideas of Bayesian inference, and maximum-likelihood estimation.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.