ebook img

2016 p53 down-regulates SARS coronavirus replication and is targeted by the SARS-unique domain and PL_ _sup PDF

2016·1.79 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview 2016 p53 down-regulates SARS coronavirus replication and is targeted by the SARS-unique domain and PL_ _sup

p53 down-regulates SARS coronavirus replication and pro is targeted by the SARS-unique domain and PL via E3 ubiquitin ligase RCHY1 YueMa-Lauera,b,JavierCarbajo-Lozoyab,MarcoY.Heinc,1,MarcelA.Müllerd,WenDenge,JianLeia,BenjaminMeyerd, YuriKusova,BrigittevonBrunnb,DevRajBairadb,SabineHüntenf,ChristianDrostend,HeikoHermekingf, HeinrichLeonhardte,MatthiasMannc,RolfHilgenfelda,andAlbrechtvonBrunnb,2 aInstituteofBiochemistry,CenterforStructuralandCellBiologyinMedicine,UniversityofLübeckandGermanCenterforInfectionResearch,partnersite Luebeck,23538Luebeck,Germany;bMax-von-PettenkoferInstitute,Ludwig-Maximilians-UniversityMunichandGermanCenterforInfectionResearch (DZIF),partnersiteMunich,80336Munich,Germany;cDepartmentofProteomicsandSignalTransduction,Max-PlanckInstituteofBiochemistry,82152 Martinsried,Germany;dInstituteofVirology,UniversityofBonnMedicalCentreandGermanCenterforInfectionResearch,partnersiteBonn,53127Bonn, Germany;eDepartmentofBiologyandCenterforIntegratedProteinScience,Ludwig-Maximilians-UniversityMunich,82152Planegg-Martinsried, Germany;andfExperimentalandMolecularPathology,InstituteofPathology,Ludwig-Maximilians-UniversityMunich,80337Munich,Germany EditedbyKennethI.Berns,UniversityofFloridaCollegeofMedicine,Gainesville,FL,andapprovedJune27,2016(receivedforreviewMarch15,2016) Highly pathogenic severe acute respiratory syndrome coronavirus (Y2H) methodologies to screen for important virus–host protein– (SARS-CoV) has developed strategies to inhibit host immune proteininteractions(PPIs),weidentifiedring-fingerandCHY recognition.WeidentifycellularE3ubiquitinligasering-fingerandCHY zinc-fingerdomain-containing1(RCHY1)andcalcium/calmodulin- zinc-fingerdomain-containing1(RCHY1)asaninteractingpartnerof dependentproteinkinaseIIdelta(CAMK2D)astwointeracting theviralSARS-uniquedomain(SUD)andpapain-likeprotease(PLpro), partners of the SARS-unique domain (SUD), which is part of and,asaconsequence,theinvolvementofcellularp53asantagonistof SARS-CoVnonstructuralprotein3(Nsp3).Containingvarious coronaviralreplication.Residues95–144ofRCHY1and389–652ofSUD subdomains [ubiquitin-like (Ubl) globular fold, acidic domain, (SUD-NM)subdomainsarecrucialforinteraction.AssociationwithSUD catalyticallyactiveADPribose-1′′-phosphatase(X-domain),SUD, increasesthestabilityofRCHY1andaugmentsRCHY1-mediatedubiq- Ubl, catalytically active papain-like protease (PLpro) domain, uitinationaswellasdegradationofp53.Thecalcium/calmodulin- nucleicacid-bindingdomain,G2Mmarkerdomain,twopredicted dependent protein kinase II delta (CAMK2D), which normally double-pass transmembrane domains, a putative metal binding influencesRCHY1stabilitybyphosphorylation,alsobindstoSUD.In region,Ydomainofunknownfunction],Nsp3proteinrepresents vivophosphorylationshowsthatSUDdoesnotregulatephosphory- thelargestNspofSARS-CoV(5)andplaysanessentialrolefor lationofRCHY1viaCAMK2D.SimilarlytoSUD,thePLprosfromSARS- theformationofviralreplicationcomplexes.Twomacrodomains CoV,MERS-CoV,andHCoV-NL63physicallyinteractwithandstabilize ofSUD(SUD-Nand,inparticular,SUD-M)havebeenshownto RCHY1,andthustriggerdegradationofendogenousp53.TheSARS- bind oligo(G) nucleotides (both deoxynucleotides and ribonu- CoVpapain-likeproteaseisencodednexttoSUDwithinnonstructural cleotides)thatareabletoformG-quadruplexes(6).Interestingly, protein3.ASUD–PLprofusioninteractswithRCHY1moreintensively andcausesstrongerp53degradationthanSARS-CoVPLproalone.We Significance showthatp53inhibitsreplicationofinfectiousSARS-CoVaswellasof repliconsandhumancoronavirusNL63.Hence,humancoronaviruses Severeacuterespiratorysyndromecoronavirus(SARS-CoV)isone antagonizetheviralinhibitorp53viastabilizingRCHY1andpromot- ofthemostpathogenichumancoronaviruses.Virulenceisreflec- ingRCHY1-mediatedp53degradation.SUDfunctionsasanenhancer tedinthemolecularinterplaybetweenvirusandhostcells.Here tostrengtheninteractionbetweenRCHY1andnonstructuralprotein3, we show a strategy of how SARS-CoV antagonizes the host leadingtoafurtherincreaseininp53degradation.Thesignificanceof antiviralfactorp53,whichimpairsviralreplication.Thepapain-like these findings is that down-regulation of p53 as a major player in protease of the nonstructural protein 3 of SARS-CoV and other antiviralinnateimmunityprovidesalong-soughtexplanationfor coronaviruses physically interact with and stabilize E3 ubiquitin delayedactivitiesofrespectivegenes. ligase ring-finger and CHY zinc-finger domain-containing 1 (RCHY1), thereby augmenting RCHY1-mediated degradation of | | | p53antiviralactivity SARS-CoVSUD papain-likeprotease p53.TheSARS-uniquedomain(SUD)enhancestheseeffects. | E3ubiquitinligaseRCHY1 coronavirusreplication Knockoutofp53promotesreplicationofSARS-CoVrepliconsand of infectious virus. Taken together we identify cellular p53 as The global outbreak of severe acute respiratory syndrome antiviralmeasureofcoronavirus-infectedcells,whichiscounter- coronavirus (SARS-CoV) in 2003 caused 774 deaths among actedviathestabilizationofRCHY1byviralSUDandpapain-like 8,098 infected individuals, although human coronaviruses (HCoVs) protease(PLpro)proteinsandviaubiquitinationofp53. had always been regarded relatively harmless until then (1, 2). To date, six coronaviruses (CoVs) are known to infect humans; Authorcontributions:Y.M.-L.,J.C.-L.,M.Y.H.,M.A.M.,andA.v.B.designedresearch;Y.M.-L., theseareHCoV-229EandHCoV-NL63belongingtothegenus J.C.-L.,M.Y.H.,M.A.M.,W.D.,J.L.,B.M.,B.v.B.,andD.R.B.performedresearch;J.L.,B.M.,Y.K., AlphacoronavirusaswellasSARS-CoV,MiddleEastrespiratory S.H.,C.D.,H.H.,H.L.,M.M.,andR.H.contributednewreagents/analytictools;Y.M.-L.,J.C.-L., M.Y.H.,M.A.M.,W.D.,J.L.,B.v.B.,D.R.B.,H.L.,andA.v.B.analyzeddata;andY.M.-L.andA.v.B. syndromeCoV(MERS-CoV),HCoV-HKU1,andHCoV-OC43of wrotethepaper. theBetacoronavirusgenus.MERS-CoVisanotherhighlypathogenic Theauthorsdeclarenoconflictofinterest. coronavirus connected with an even higher case/fatality rate. ThisarticleisaPNASDirectSubmission. Despiteadecadeofresearchefforts,thereareneitherapproved FreelyavailableonlinethroughthePNASopenaccessoption. antiviraltreatmentseitherspecificforSARS-CoVorwithabroad- 1Presentaddress:CellularandMolecularPharmacology,UniversityofCalifornia,SanFrancisco, spectrumprofileforallhumancoronaviruses,noranyvaccineavail- CA94158. able (2–4). Therefore, it is necessary to further study coronavirus– 2Towhomcorrespondenceshouldbeaddressed.Email:[email protected]. host relations to discover new targets and signaling pathways for Thisarticlecontainssupportinginformationonlineatwww.pnas.org/lookup/suppl/doi:10. antiviral intervention. Applying high-throughput yeast-2-hybrid 1073/pnas.1603435113/-/DCSupplemental. E5192–E5201 | PNAS | PublishedonlineAugust12,2016 www.pnas.org/cgi/doi/10.1073/pnas.1603435113 S U L P S A N amino acid residues of SUD-M that have been shown to be in- SUD–RCHY1interactions,identifyp53asanegativeregulatorof P volvedinG-quadruplexbinding(6)arealsoessentialforthefunc- CoV replication, and characterize the RCHY1-dependent mecha- tionofthedomaininSARS-CoVreplicationandtranscription(7). nismforSARS-CoVtoabolishp53antiviralactivity. PLpro (corresponding to Nsp3 residues720–1039)is the C-terminal neighbortotheSUD.PLproand3C-likeproteinase(3CLpro)process Results the viral replicase polyproteins into 16 replicase proteins. Many SUDInteractswithRCHY1andCAMK2DinVivo.Studyingvirus–host CoVs encode two Papain-like proteases (PLPs) [PLP1 (cleaving interactions, we have recently performed Y2H screens of a com- Nsp1/Nsp2 and Nsp2/Nsp3), PLP2 (cleaving Nsp3/Nsp4)] within plete SARSCoV ORF collection (ORFeome) with human cDNA Nsp3. SARS-CoV PLpro and most of other CoV PLpros display libraries(34).SeveralE3ubiquitinproteinligasesincludingRCHY1 deubiquitinating and deISGylating activities, thus acting as IFN were identified as interacting partners of SUD. Independently, plasmidsexpressinganectopicGFP–SUDfusionweretransfected antagonistsandcontributingtoevasionofinnateimmuneresponse. intoHEK293cells.Togetherwithitshost-bindingpartners,the RCHY1isanE3ubiquitinligasemediatingproteasomaldegra- dationof itstarget proteins;itstargetsincludethetumorproteins GFP–SUD fusion protein was subsequently enriched with a p53,p63,andp73(8–10).RCHY1regulatescell-cycleprogression GFP-trapconsistingofbeadscoatedwithanti-GFPantibodies. andisinduciblebyp53(8,11);italsoformsahomodimerandhas Afterquantitativemass-spectrometryanalysisoftheproteinsbound self-ubiquitination activity (12). RCHY1 is a short-lived protein. to the beads (35, 36), RCHY1 showed up again as an interacting Inhibition of RCHY1 ubiquitination via interaction with measles partnerofSUD(Fig.1A–C).Inaddition,CAMK2Dwasalso virusphosphoproteincanenhancethestabilityofRCHY1(13).In identified to bind to SUD in the same assay. RCHY1–SUD in- addition,phosphorylationbycyclin-dependentkinase9(CDK9)or teractionwasfurtherconfirmedbyfluorescence-3-hybridassay(Fig. CAMKIIcanalsoregulatethestabilityofRCHY1.Phosphorylation S1).Mostinterestingly,RCHY1isasubstrateofCAMKII(14). byCAMKIIatThr154/Ser155increasesinstabilityofRCHY1and ToconfirmthatSUDalsobindstothosenovelpartnersinvivo, impairstheE3ubiquitinligaseactivityofRCHY1towardp53(14). split-YFP protein–protein interaction assays were carried out in CAMK2D belongs to the calcium/calmodulin-dependent serine/ humanlivingcells(HEK-293).SUDanditsinteractingcandidates threonineproteinkinaseII(CAMKII)familyinvolvedinmanysig- were fused to the C-terminal (YFPC) and N-terminal (YFPN) nalingpathways.CAMKIIisaholoenzymecomposedofCAMK2A/ YFPfragments,respectively.IfSUDbindstoatestedcandidatein 2B/2G/2Disoforms(15).Thesehaveverysimilarstructures,including thisassay,theN-terminalandC-terminalYFPfragmentswillas- an N-terminal kinase domain, a central regulatory domain with a semble, leading to fluorescence emission (37). As a result, SUD calmodulin-bindingregion,andaC-terminalassociationdomain(15– wasdemonstratedtobindtobothRCHY1andCAMK2Dinthe 17). Important substrates of CAMKII include RCHY1 and signal cytosolofHEK293livingcells(Fig.1DandE). transducer and activator of transcription 1 (STAT1). CAMKII im- CAMKII isoforms can phosphorylate RCHY1 at T154/S155 pairstheE3ligaseactivityofRCHY1viaphosphorylation(14). in vitro (14), but a physical interaction between RCHY1 and p53 regulates a plethora of target genes that mediate tumor CAMK2D has never been examined in vivo. For this reason, a suppressionbyinducingmultipleprocessessuchascell-cyclearrest, split-YFP assay was performed. However, no clear YFP signal DNArepair,apoptosis,andsenescence(18,19).Theproteasomal representingassociationofRCHY1andCAMK2Dwasdetected. degradationofp53isregulatedbyseveralE3ubiquitinligasessuch TheinvivoexpressionlevelofRCHY1wassubsequentlyfoundto as RCHY1 and MDM2 (8, 20, 21). RCHY1 binds to the central beextremelylowinthepresenceofCAMK2D,comparedwiththe region of p53, ubiquitinates p53, and promotes p53 degradation expressionlevelinthepresenceofSUD.Alternatively,theRCHY1– independentlyofMDM2(8).LikeRCHY1,MDM2isalsoazinc CAMK2D interaction was tested by a highly sensitive coimmuno- fingerandRINGdomain-containingE3ubiquitinligase(22).High precipitation (coIP) assay. As shown in Fig. 1 F and G, the levelsofMDM2inducepolyubiquitinationanddegradationofp53, SUD–RCHY1andSUD–CAMK2Dinteractionswerefurther whereaslowlevelsofMDM2leadtomonoubiquitinationandnu- confirmed(Fig.1F,comparelanes2and4withlane1;Fig.1G, Y clearexportofp53(23).CDK9phosphorylatesRCHY1atSer211/ compare lanes 6 and 5). Furthermore, the RCHY1–CAMK2D OG Thr217andMDM2atSer395,causingdegradationofRCHY1and interactionwasdetected(Fig.1F,comparelane3and4withlane1). OL attenuatedactivityofMDM2towardp53,respectively(24,25).p53 Negativecontrols(lane1inFig.1Fandlane5inFig.1G)showed OBI canalsobedirectlyphosphorylatedbyCDK9atSer392,leadingto nounspecificbindingofCAMK2D–HAorSUD–RFPtotheGFP- MICR p53accumulation(26).Inadditiontoitstumorsuppressiveactivity, trap.Inconclusion,thereisdirectphysicalinteractionbetweeneach p53alsoservesashostdefensemoleculeduringviralinfection(27). pairofproteinsamongCAMK2D,RCHY1,andSUD. Notably, p53 was identified by its interaction with SV40 large T antigen(28).Overexpressionofp53reducesHIV-1replicationvia RCHY1 Residues 95–144 Bind to SUD. The RCHY1 protein as an preventing phosphorylation of RNA polymerase II and conse- interacting partner of SUD consists of 261 aa residues. The N-ter- quentlyestablishingadelayedRNApolymeraseIIcomplexatthe minalfragmentcomprisingresidues1–94containsaCHYzinc-finger LTRofHIV-1(29).Arecentstudyreportedthatectopicexpression domain(residues20–94)thatisresponsibleforbindingtocalmodulin of HCoV-NL63 PLP2 promotes p53 degradation by interaction (14).TheC-terminalfragmentcomprisingresidues145–261contains with the cellular ubiquitin ligase MDM2 and that p53 exhibits aRING-fingerdomain(residues145–186)withintrinsicE3ubiquitin antiviral activity onthereplication ofSendai virus (30).Further- ligaseactivityandazincribbon(residues190–250).Themiddlere- more,p53functionsasanantiviralfactoragainstinfluenzaAvirus gionofRCHY1comprisingresidues120–137isrequiredforbinding (31).Toantagonizethenegativeeffectofp53,someviruseshave to tumor protein p53 and to CDK9 (8, 24). Phosphorylation by evolved strategies to induce p53 degradation. Epstein–Barr virus CAMKII at T154/S155 or by CDK9 at S211/T217 enhances self- (EBV) applies a double strategy to counteract p53. First, EBV ubiquitinationofRCHY1andshortensitshalf-life(14,24).A nuclearantigen3CdeubiquitinatesandstabilizesMDM2,thereby schematicdomainpresentationofRCHY1isshowninFig.2A. enhancing ubiquitination and degradation of p53 (32). Second, TodeterminewhichregioniscrucialforinteractionwithSUD,we during the lytic infection of EBV, p53 is phosphorylated and in- clonedtwotruncatedRCHY1fragmentsintosplit-YFPdestination capable of interacting with MDM2. However, the viral BZLF1 vectorsand tested theirinteractionswith SUD.One fragment con- proteincaninteractwithp53andsubsequentlyrecruitp53,espe- tainedresidues1–144andwasthuslackingtheRING-fingerdomain ciallyphosphorylatedp53,toECSE3ubiquitinligasecomplexfor and the zinc ribbon; the other contained residues 95–261 and was ubiquitin-mediateddegradation(33). devoidofthecalmodulin-bindingregion(Fig.2A).Interestingly,both WehaverecentlyestablishedaSARS-CoV–hostinteractomeby truncated RCHY1 fragments interacted with SUD (Fig. 2B). The screening interactions of individual viral proteins against human region in common between these two fragments, residues 95–144, cDNA libraries, leading to the identification of important cellular wasconsequentlysupposed toberequiredforbindingtoSUD.In- pathwaysandtargetsforthepreventionofCoVreplication(34).In deed,it wassubsequentlydemonstrated that theRCHY1 fragment the present study, we investigate the SUD–CAMK2D as well as 95–144interactedwithSUDinthecytosolofHEK293cells(Fig.2B). Ma-Laueretal. PNAS | PublishedonlineAugust12,2016 | E5193 Fig.1. InteractionsamongSUD,RCHY1,andCAMK2D. Affinity-enrichment mass spectrometry screen (A–C): SUDwithaC-orN-terminalGFPtagwasrecombinantly expressedinHEK293cellsandenrichedfromcelllysates using GFP-trap agarose beads (ChromoTek). Volcano plotsshowenrichmentfactorsofallquantifiedproteins in C-terminally (A) or N-terminally (B) tagged SUD- expressing samples over vector-only controls, plotted againstPvaluesdeterminedfromatwo-samplettest betweenthreereplicateseach.Significancecurveswere determinedasdescribed(36)usingc=0.5andx0=0.5 cutoff parameters. (C) Label-free quantification in- tensitiesofselectedproteinsacrossallsamples.Tocal- culateenrichmentfactors,missingquantificationswere imputedwithnoisesimulatingthedetectionlimit(35). (D) Split YFP: YFPN (YFP N-terminal fragment, amino acids1–155)wasfusedtotheNterminusofRCHY1,and YFPC(YFPC-terminalfragment,aminoacids156–239) was fused to the N terminus of SUD. At 24 h after cotransfection of both plasmids into HEK-293 cells, strongYFPsignalwasdetectedinthecytosol.Negative controls are YFPN–RCHY1 in combination with YFPC vectorandYFPC–SUDincombinationwithYFPNvector. (E) Split YFP: YFPN was fused to the N terminus of CAMK2D, and YFPC was fused to the C terminus of SUD.At24haftercotransfection,clearYFPsignalwas detectedinthecytosolofHEK293cells.(F)Co-IP:plas- midsexpressingtheindicatedgenesweretransfected intoHEK293cellsgrownin10-cmdishes.At24hafter transfection,cellswerelysedandthelysateswerepu- rifiedwithGFP-trapconsistingofagarosebeadscoated withanti-GFPantibodies.IPsampleswereanalyzedby 12%(wt/vol)SDS/PAGEandWesternblotting(WB)with anti–SARS-CoVNsp3,anti-HA,andanti-GFPantibodies. (G)Co-IP:plasmidsexpressingCAMK2D–HAfusionto- getherwithplasmidsexpressingGFPorGFP–SUDwere cotransfectedintoHEK293cellsgrownin10-cmdishes. At24haftertransfection,cellswerelysed.Thelysates werepurifiedwithGFP-trapandsubsequentlyanalyzed byWBwithanti-HAandanti-GFPantibodies. Ofnote,theRCHY1bindingsitesforp53andCDK9arewithinthis causep53issubjecttoubiquitinationbyRCHY1,bothinvivoandin region(8,24). vitro (8), we examined whether binding to SUD influences the E3 ubiquitin ligase activity of RCHY1. As mentioned previously, the SUD-NMInteractswithRCHY1.SUDislocatedbetweentheX-domain regionofRCHY1involvedinbindingtop53iswithintheRCHY1 andthePLprodomainofSARS-CoVNsp3(Fig.S2A);itconsistsof fragment (residues 95–144) that binds to SUD. Therefore, we first three subdomains: SUD-N, SUD-M, and SUD-C. SUD-N and, in assumed SUD to compete with the RCHY1–p53 interaction and particular, SUD-M have been demonstrated to bind oligo(G) consequentlyimpairRCHY1-mediatedubiquitinationofp53.How- nucleotidescapableofformingG-quadruplexes(6).Inaddition, ever,theinvivoubiquitinationassayrevealedthatSUDdramatically SUD-CexhibitsRNA-bindingactivity(38).Theinteractionbetween promotedtheubiquitinationofp53(Fig.3A).Thenegativecontrol RCHY1anddiverseSUDsubdomainfragmentswastestedbysplit- (Fig.3A,lane1)showsthatGFPwasnotubiquitinatedbyRCHY1. YFP microscopy (Fig. S2B). SUD-NM did bind to RCHY1, Thus,themultiplebandsappearingintheanti-HAblotofFig.3A, whereas neither SUD-N nor SUD-M alone did. SUD-MC did lane2,onlyrepresentp53ubiquitination;comparedwithlane2,lane notbindtoRCHY1either.TheresultsindicatethatbothSUD-N 3showsthatSUDstronglyaugmentedubiquitinationofp53. andSUD-MareindispensablefortheinteractionwithRCHY1. As shown in Fig. S2A, the PLpro domain occurs next to the C MERS-CoVisanotherhighlypathogeniccoronavirus.TheMERS terminusoftheSUDwithinSARS–CoVNsp3.ThePLproreleases Nsp3containsahomologtoSUD-MC,butnottoSUD-N(Fig.S3). the nonstructural proteins Nsp1, Nsp2, and Nsp3 from the viral The interaction between RCHY1 and MERS-MC (homologous to polyproteins. In addition to being a protease, PLpro possesses deu- SUD-MC)wasalsoanalyzedbysplit-YFPfluorescencemicroscopy. biquitinating(DUB)anddeISGylatingactivities(39,40).Initially,we Consistent with the lacking interaction between SUD-MC and thoughtthatSUDpromotingp53ubiquitinationwasinconflictwith RCHY1,MERS-MCdidnotbindtoRCHY1(Fig.S2C). the DUB activity of PLpro. The SARS–CoV PLpro and the SUD– PLprofusionwerethereforeclonedtotestwhetherp53isasubstrate SUD Augments Ubiquitination of p53. As shown previously, the E3 ofthePLpro.Theinvivoubiquitinationassaydemonstratedthatthe ubiquitin protein ligaseRCHY1 physically interactswith SUD.Be- PLprowasnotabletodeubiquitinatep53(Fig.3B).Thetwoanti-HA E5194 | www.pnas.org/cgi/doi/10.1073/pnas.1603435113 Ma-Laueretal. S U L P S A N by hiding the phosphorylation sites of RCHY1), an in vivo phos- P phorylationassaywascarriedout(Fig.4A);thisshowedthatSUD doesnotregulateCAMK2D-mediatedphosphorylationofRCHY1 (comparelane3withlane2).Theanti–phospho-Ser/Thrblotofthe immunoprecipitates did not reveal phosphorylation of GFP by CAMK2D (Fig. 4A, lane1); similarphosphorylation intensities of RCHY1 were detected in the absence (lane 2) and presence of SUD (lane 3). Phorbol-12-myristate-13-acetate (PMA) and ion- omycinwereaddedtothecellstoopenthecalciumchannelsonthe plasma membrane, in view of the calcium and calmodulin de- pendence of CAMK2D. In conclusion, the interaction between SUDandCAMK2Ddoesnotinhibittheproteinkinaseactivityof CAMK2DtowardRCHY1. SUD Stabilizes RCHY1. Phosphorylation of RCHY1 by CAMKII abrogatestheE3ubiquitinligaseactivityofRCHY1towardp53;it also leads to enhanced self-ubiquitination and instability of RCHY1(14).However,SUDdoesnotblockthephosphorylation ofRCHY1despitethefactthatSUDaugmentsubiquitinationof p53.TofindoutthemechanismofhowSUDpromotesRCHY1- mediatedubiquitinationofp53,theproteinlevelofRCHY1was examined in the absence and presence of SUD. RCHY1 has a shorthalf-lifeof∼3.5h(14).Therefore,theexpressionlevelofthe RCHY1–RFP fusion was very weak, despite the presence of the strong CMV promoter (Fig. 4B, Upper). However, SUD clearly enhanced the protein level of RCHY1–RFP fusion (Fig. 4B, Lower). Western blot has also demonstrated that SUD leads to accumulationofMyc-YFPN-RCHY1(Fig.4C). SUD–PLproFormsaComplexwithRCHY1andp53.p53couldbepulled downbyRCHY1inacoIPassay(8).RCHY1islocatedinboththe nucleusandthecytosol,whereasp53canalsoshuttlebetweenthese twocompartments(14,41).IthasnotbeenreportedwhereRCHY1 andp53interactwitheachother.Therefore,weperformedasplit- YFP assay to answer this question. However, the YFP signal was not detectable due to the low expression level of RCHY1. The RCHY1fragment1–144containingboththeSUDandp53binding sitesdisplayedamuchhigherexpressionlevel.Thesplit-YFPassay revealedthatp53interactswithRCHY1fragment1–144mainlyin thenucleusandonlytoasmallextentinthecytosol(Fig.4D).Thus, in the cytosol, RCHY1 can interact with both SUD and p53. To Y investigatewhetherp53andSUDcompeteforbindingtoRCHY1, G O anexcessiveamountofplasmidsectopicallyexpressingthep53–RFP OL fusionwascotransfectedwithYFPN-RCHY1andYFPC-SUD OBI plasmids into HEK293 cells(Fig. 4E). Asa result, the split-YFP CR MI signalrepresentingtheinteractionbetweenRCHY1andSUDwas notdiminished,indicatingthattherewasnocompetitionbetween p53andSUDforbindingtoRCHY1. Subsequently,wetestedwhetherp53canformacomplexsimul- Fig.2. RCHY1aminoacids95–144andSUD-NMarecrucialforinteraction. taneouslywithRCHY1andSUD.Tobettermimictherealsituation (A)SchemeofRCHY1.(B)SplitYFP:YFPNwasfusedtotheNterminusof oftheviralproteininteractingwithRCHY1inSARS-CoV–infected truncatedRCHY1fragments,andYFPCwasfusedtotheCterminusofSUD. cells, the SUD–PLpro fusion protein instead of SUD was applied. At24haftertransfectionoftheexpressionplasmidsintoHEK293cells,YFP p53-GFPwasabletopulldownSUD–PLprointhecoIPassayonlyif signalwasexaminedbyfluorescencemicroscopy. RCHY1wasalsoexpressed(Fig.4F,comparelane3withlane2); this indicates that p53 forms a complex with RCHY1 and SUD– PLprobutthereisnodirectinteractionbetweenp53andSUD–PLpro. blots of input and immunoprecipitation samples showed that the Thenegativecontrol(Fig.4F,lane1)showsnounspecificbindingof PLpro deubiquitinated some endogenous proteins but not p53 RCHY1orSUD–PLprototheGFP-trap. (compare lane 4 with lanes 1 and 2 in Fig. 3B). Like SUD, the CDK9isanotherimportantproteinkinaseinvolvedinRCHY1– SUD–PLprofusionproteinwasalsoabletoaugmentubiquitination p53signaling.SimilartoCAMK2D,CDK9phosphorylatesRCHY1 of p53 (compare lane 3 with lane 2 in Fig. 3B). Interestingly, as and enhances the self-ubiquitination of this protein. However, dif- shownintheanti-Mycblot,theproteinlevelofMyc-YFPN–RCHY1 ferently from CAMK2D, CDK9 can directly phosphorylate p53 at wasup-regulatedbybothPLproandSUD–PLpro. Ser392(24).WethereforetestedapossiblebindingofSUD–PLproto CDK9butcouldnotdetectanyinteraction(Fig.4F,lane4). SUD Does Not Interfere with Phosphorylation of RCHY1. CAMKII phosphorylatesRCHY1at T154/S155and therebyimpairstheE3 PLproBindstoRCHY1andPromotesItsAccumulation.Toconfirmthat ubiquitinligaseactivityofRCHY1towardp53(14).CAMK2D,asa SUD–PLpro binds to RCHY1 in vivo, plasmids expressing YFPN- memberoftheCAMKIIfamily,bindstoRCHY1(Fig.1F).SUD SUD–PLpro and YFPC–RCHY1 were transfected into HEK293 interacts with both RCHY1 and CAMK2D (Fig. 1). To find out cells for a split-YFP assay. A vector expressing YFPN–PLpro was whetherSUDinterfereswithCAMK2D-mediatedphosphorylation appliedasoneofthecontrols.Bychance,aninteractionbetween ofRCHY1(e.g.,byblockingtheenzymaticdomainofCAMK2Dor RCHY1 and SARS–CoV PLpro was discovered although the Ma-Laueretal. PNAS | PublishedonlineAugust12,2016 | E5195 interaction was weaker than the interaction between the SUD– PLprofusionandRCHY1(Fig.5A). AcoIPassaywassubsequentlyperformedtofurtherconfirmthe binding of PLpro to RCHY1. HA-tagged PLpro was pulled down together with GFP–RCHY1 by the GFP-trap containing beads coated with anti-GFP antibodies (Fig. 5B), implying a physical interactionbetweenSARS–CoVPLproandRCHY1.Similarlyto SUD, PLpro also influences the stability of RCHY1 (Fig. 5C). Interestingly,bothSUDandPLproledtoaccumulationofRCHY1 at the protein level but not the mRNA level (Fig. 5C, compare lanes2and3withlane1).ComparedwiththeSUD–PLprofusion and PLpro, SUD promoted a slightly higher accumulation of RCHY1whenexpressedseparately(Fig.5C,comparelane4with lanes 2 and 3). Because it is known that viral SARS-CoV PLpro acts as a deubiquitinase on cellular proteins and inhibits innate immuneresponses,wetestedtheeffectofPLproonRCHY1inan in vitro deubiquitination assay (Fig. S4). As RCHY1 was not deubiquitinatedbyPLpro,theproteinmustbestabilizedbyadif- ferent,as-yet-unknownmechanism. SUD–PLproLeadstoDegradationofp53.Ubiquitination ofp53can regulatetheproteininmanydifferentaspects,suchasprotease- mediateddegradation,degradation-independentnuclearexport, and functional alteration (41). To find out the consequence of enhancedp53ubiquitinationpromotedbySUDandSUD–PLpro, the endogenous p53 protein level was tested (Fig. 5D). Ectopic HA-taggedRCHY1wastransfectedintocellsasapositivecontrol. Overexpression of RCHY1 resulted in p53 degradation (Fig. 5D, comparelane2withlane1).Likethephenotypeobtainedfromthe positive control, SUD–PLpro also led to dramatic enhancement of the degradation of p53 (Fig. 5D, compare lane 3 with lane 1). Subsequently,PLproalonewasalsofoundtocausep53degradation (Fig.5D,comparelane5withlane4).Moreover,theSUD–PLpro fusionresultedinfurtherdegradationofp53comparedwithPLpro alone (Fig. 5D, compare lane 6 with lane 5), which indicates that SUDaugmentsp53degradation. P53InhibitsReplicationofaSARS-CoV.Thetumorsuppressorprotein p53hasbeendemonstratedtopossessaninhibitoryeffectonsome virusessuchasHIV-1andhumanpapillomavirus(42,43).Ectopic expressionof HCoV-NL63 PLP2wasshownto promotep53deg- radation by interaction with the cellular ubiquitin ligase MDM2, leadingtoreducedreplicationofSendaivirus(30).However,toour knowledge,adirecteffectofp53oncoronavirusreplicationhasnot been shown before. To investigate how SARS-CoV benefits from p53degradationpromotedbySUD–PLpro,theinfluenceofp53on viral growth of SARS-CoV was examined. Human ACE2-trans- genicp53-expressingHCT116cells(HCT116/ACE2p53+/+)aswell as p53 knockout cells (HCT116/ACE2 p53−/−) were infected with SARS-CoV,andviralreplicationwasmonitoredbyreal-timePCR. AsshowninFig.6,SARS-CoVgrewtoan∼1,000-foldhighertiter in p53−/− cells compared with p53+/+ (Fig. 6A). To exclude that differential metabolism or cell growth was responsible for differ- encesinvirusreplication,cellswereinfectedwithasecondvirusin parallel.Vesicularstomatitisvirus(VSV)grewequallywellinboth p53−/−and p53+/+ HCT116/ACE2 cells, suggesting that facilitated growthwasSARS-CoVspecific(Fig.6B). Loss-of-function assays were also performed to examine the effect of p53 on replication of the SARS-CoV replicon. The SARS-CoV replicon DNA pBAC-SARS-Rep-R(enilla)Luc (7) and the SARS-CoV replicon RNA in vitro transcribed from pBAC-SARS-Rep-M(etridia)Luc (34) carrying a secreted Met- ridia luciferase reporter were tested in p53-expressing HCT116 lysateswerepurifiedwithGFP-trapconsistingofbeadscoatedwithanti-GFP antibodies.ThesamplesofIPandinputwereanalyzedby12%(wt/vol)SDS/ Fig.3. SUDaugmentsp53ubiquitinationandstabilizesRCHY1.(A)Plasmids PAGEandWBwithanti-HA,anti-GFP,anti–SARS-CoVNsp3,anti-Myc,andanti- expressingHA-taggedubiquitin,c-Myc-taggedYFPN-RCHY1,GFPorp53–GFP laminAantibodies.(B)Plasmidsexpressingindicatedproteinswerecotrans- fusion, and RFP or SUD–RFP fusion were cotransfected into HEK293 cells fectedintoHEK293cellsgrowingin10-cmdishes.Theinvivoubiquitination growingin10-cmdishes.At24haftertransfection,cellswerelysedandthe assaywascarriedoutasdescribedinA. E5196 | www.pnas.org/cgi/doi/10.1073/pnas.1603435113 Ma-Laueretal. S U L P S A N P Fig.4. SUDdoesnotinterferewithphosphorylationofRCHY1andstabilizesit.(A)TheindicatedplasmidswerecotransfectedintoHEK293cellsgrowingin Y 10-cmdishes.At20hposttransfection,PMAtoafinalconcentrationof20ng/mLandionomycintoafinalconcentrationof1μMwereaddedtothecells.Two OG L hoursafterthetreatment,cellswerelysedandthelysateswerepurifiedwithGFP-trap.ThesamplesofIPandinputwereanalyzedby12%(wt/vol)SDS/PAGE/ O WBandprobedwithanti–phospho-Ser/Thr,anti-GFP,anti-HA,anti-Myc,andanti–SARS-CoVNsp3antibodies.(B)PlasmidsexpressingRCHY1–RFPandplas- OBI R m2%ids(wetc/tvoopl)icpaallryafeoxrpmrealsdsienhgydSeUD(PFwAe)raencdotsrtaainnsefdecwteitdhinDtAoPHI.ETKh2e9s3amceplllsesgwroewrenfoinnaclloyveexrasmlipinseindaw2it4h-waeflluloprlaestcee.nAttm2i4crhosacfotpeert(rLaenicsafeDcMtio4n0,0c0eBll;s1w0×eroebfjiexcetdivew)i.tAh MIC representativeareaofpicturestakenrandomlyisshown.(C)Split-YFPplasmidsexpressingMyc-YFPN–RCHY1andexpressingYFPCorSUD–YFPCweretransfectedto HEK293cellsgrowinginasix-wellplate.At24haftertransfection,cellswerelysed.ThelysateswereWesternblottedwithanti-Mycandanti-laminAantibodies. (D)YFPNwasfusedtotheNterminusofRCHY1aminoacids1–144,andYFPCwasfusedtotheNterminusofp53.Split-YFPfluorescencemicroscopywasperformed asdescribedbefore.(E)The300-ngplasmidsectopicallyexpressingRFPorp53-RFPtogetherwith100-ngplasmidsexpressingYFPN–RCHY1andYFPC–SUDwere cotransfectedintoHEK293cellsgrowingoncoverslipsina24-wellplate.Thesplit-YFPexperimentwascarriedoutasdescribedbefore.(F)Indicatedplasmidswere transfectedintoHEK293cellsgrowingin10-cmculturedishes.TheGFP-trap-basedcoIPwasperformedasdescribedbefore. p53+/+andHCT116p53–knockoutp53−/−cells(44)aswellasin replicationoftheSARS-CoVrepliconby65%,whereasithadno adoxycycline(DOX)-dependentp53-induciblecelllineSW480(19) effect on the pcDNA3.0 Renilla luciferase (pcDNA3.0 RLuc) (Fig. 6 C and D). p53 expression was monitored by Western blot control(Fig.S6).Theresultsdemonstratethatp53isanegative usinganti-p53antibodiesintherespectivecelllines(Fig.S5).Both regulatorofSARS-CoVreplication. of the replicons replicated better in HCT116 p53−/− than in HCT116p53+/+,andbetterinSW480withoutDOXinductionthan MERS-CoV PLpro and HCoV-NL63 PLP1/2 Interact with and Stabilize inSW480withDOXinduction.Theobservedfolddifferencesbe- RCHY1 and Cause Endogenous p53 Degradation. As its name im- tweentheuseofrepliconsandvirusinfectionareattributedtothe plies, the SUD is unique for the SARS-CoV, whereas PLpro do- commonly lower replication efficiencies of coronavirus replicons mainsarerelativelywell-conservedincoronaviruses(39).Among (>27 kb), because transfection/electroporation efficiencies do not thehumancoronaviruses,onlySARS-CoVandMERS-CoVhave reach 100% of cells. On the contrary, viable virus is much more one PLpro domain, whereas most other HCoVs have two PLpro efficient due to multicycle infection and exponential growth when domains, PLP1 and PLP2 (39, 45, 46). To investigate whether usinglowmultiplicitiesofinfections(MOIs,0.001). other HCoV PLpros also target RCHY1, similarly to what the ToexploretheefficiencyofgenomereplicationofSARS-CoV SARS-CoVPLprodoes,weclonedtheMERS-CoVPLproandthe replicon under the pressure of p53 the plasmid pBAC-SARS- HCoV-NL63PLP1/2toperformacoIPRCHY1-bindingassay.As Rep-RLucwastransfectedintoHEK293cellsatincreasingcon- a result, MERS-CoV PLpro and NL63 PLP1 showed clear in- centrationsofap53-expressingplasmid.p53stronglyreduced teractionwithRCHY1(Fig.7A,comparelanes2and3withlane1). Ma-Laueretal. PNAS | PublishedonlineAugust12,2016 | E5197 Fig.5. SARSPLprointeractswithRCHY1andleadsto accumulationofRCHY1aswellasp53degradation. (A)YFPNandYFPCwerefusedtotheNterminusof SARS PLpro and to the N terminus of RCHY1, re- spectively. At 24 h after transfection, HEK293 cells werefixedwithPFAandstainedwithDAPI.Samples wereinspectedwithafluorescentmicroscope(Leica DM4000 B, 40× objective; Upper). Pictures for sta- tistical analysis were taken from at least five ran- domlychosenareas.Intensitiesofsplit-YFPandDAPI signalsweremeasuredwithImageJsoftware(***P< 0.001;Lower).(B)PlasmidsexpressingHA-taggedSARS PLproandGFPorGFP–RCHY1fusionweretransfected intoHEK293cellsgrownin10-cmculturedishes.The coIPassaywasperformedasdescribedbefore.(C)WB (Upper)PlasmidsectopicallyexpressingSUD,PLpro,or SUD–PLpro fusion were transfectedintoHEK293 cells growninasix-wellplate.Celllysateswereprepared24h posttransfectionandsubjectedtoWesternblotting with anti-Myc and anti-lamin A antibodies. qPCR: (Lower)PlasmidsectopicallyexpressingSUD,PLpro,or SUD–PLprofusionweretransfectedintoHEK293cells grownina24-wellplate.At24hposttransfection,cells were harvested for total RNA extraction, first cDNA synthesis,andsubsequentSYBRGreenqPCR.Theex- periment was carried out in quadruplicates. (D) In- dicatedplasmids were transfectedinto HEK293 cells growninasix-wellplate.At24hposttransfection,cells were lysed for Western blotting with anti-p53 and anti-laminAantibodies. MostoftheGFP-NL63PLP2wasdegradedwithonlyalittleintact coronavirusessharethisstrategytoantagonizetheantiviralhost proteinremaining(Fig.7A,lane4).Nevertheless,asmallamount factorp53.SUDalonestronglybindstoandstabilizesRCHY1, ofHA-RCHY1couldbecoimmunoprecipitatedbyGFP-NL63 leading to stimulation of p53 ubiquitination and degradation. PLP2(Fig.7A,comparelane4withlane1),implyinginteraction The SUD–PLpro fusion interacts with RCHY1 more intensively betweentheseproteins.Tofurtherconfirmtheinteraction,asplit- and causes stronger endogenous p53 degradation than SARS- YFPassaywasperformed(Fig.S7).BothMERS-CoVPLproand CoV PLpro alone. Hence, SUD functions as an enhancer for NL63PLP2showedclearinteractionwithRCHY1inthenucleus SARS-CoVNsp3tocounteractp53,andthismightcontributeto andthe cytosol, whereas NL63PLP1 interacted with RCHY1 at thehighvirulence ofSARS-CoV. theenodplasmicreticulum(ER). The mechanism of how SUD and PLpro/PLPs stimulate the ac- Subsequently, we examined whether MERS-CoV PLpro and cumulation of RCHY1 remains unclear. It is known that phos- NL63PLP1/2alsostabilizeRCHY1.AsshowninFig.7B,allofthe phorylation by CAMKII or CDK9 leads to polyubiquitination and testedPLprosstimulatedRCHY1accumulation(comparelanes2,3, subsequent degradation of RCHY1 (14, 24), but SUD does not and4withlane1).Indeed,thestabilizationofRCHY1bytheNL63 impair the phosphorylation activity of CAMK2D toward RCHY1. PLP2wasdramatic(Fig.7B,comparelane4withlane1).Consis- Becausepapain-likeproteasesofSARS-CoV,MERS-CoV,and tent with this result, all of the tested PLpros led to degradation of NL63possessdeubiquitinatingactivity(39,46,47)andcanstabilize endogenous p53 as well (Fig. 7C). Thus, similarly to SARS-CoV RCHY1,weoriginallyhypothesizedthatthelattermaybeapossible PLpro,MERS-CoVPLproandNL63PLP1/2alsotargetedRCHY1 substrate for these enzymes. However, an in vitro deubiquitination forp53degradation. assay has shown that SARS-CoV PLpro does not deubiquitinate Tofindoutwhetherp53inhibitsviralreplicationofotherHCoVs RCHY1. Thus, SUD and PLpro should stabilize RCHY1 through inadditiontoSARS-CoV,theinfluenceofp53onNL63replication othermechanisms,e.g.,bycounteractingthebindingofRCHY1to wastested.Duetoanextremelylowtransfectionefficiencyofp53 CDK9orinterferingwiththehomodimerizationofRCHY1forself- intotheNL63-infectedhost Caco2 cells,HEK293 cellstransiently ubiquitination.BecausebothSUDandPLprophysicallyinteractwith expressingtheNL63receptorACE2wereusedasasubstitutefor RCHY1, their mechanisms of RCHY1 stabilization might also be Caco2.Real-timequantitativePCR(q-PCR)analysisrevealedthat differentfromoneanother. NL63replicationwasreducedby∼30%incellsoverexpressingp53, The protein level of RCHY1 is dramatically increased in the compared with control (Fig. 7D); this implies that p53 is an in- presenceof SUD. Asa result,RCHY1-mediatedubiquitinationof hibitoryfactornotonlyforSARS-CoVbutalsoforotherHCoVs. p53 is enhanced and p53 degradation is stimulated. However, en- hanced p53 degradation should not be the only consequence of Discussion RCHY1accumulation.Besidesp53,thesubstratetargetsoftheE3 PLP1/2 of the alphacoronavirus NL63 as well as the PLpros of ubiquitinligaseRCHY1includetranscriptionfactorsp63,p73,and SARS-CoV and MERS-CoV from the genus betacoronavirus c-Myc; checkpoint kinase Chk2; DNA polymerase polH; histone physically interact with and stabilize RCHY1, and lead to p53 deacetylaseHDAC1;andCDKinhibitorp27Kip1(9,10,48–52).It degradation. Because PLpros and PLPs are relatively well con- canbehypothesizedthatduringHCoVinfection,theproteinlevels served among coronaviruses, it is highly likely that all of the ofvariousgenesmightalsobedown-regulated.SUDalsophysically E5198 | www.pnas.org/cgi/doi/10.1073/pnas.1603435113 Ma-Laueretal. S U L P S A N P Fig.6. p53inhibitsreplicationofaSARS-CoV.(AandB)IncreasedSARS-CoVgrowthinp53−/−ACE2-transgenicHCT116cells.HCT116/ACE2withp53(+/+)and withoutp53(−/−)wereseededat2×105cellspermL.After24h,cellswereinfectedinquadruplicatewithSARS-CoV(Frankfurt)andVSV(Indiana)atanMOI of0.001.After1hat37°C,cellswerewashedwithPBSandMcCoyculturemediumwasreplenished.Samplesweretakenat0and24hpostinfection.Viral RNAwasextractedbyaMacherey-NagelviralRNAkit.Real-timePCRwasperformedusingvirus-specificprobesandprimerswiththeOne-StepSuperScriptIII Kit(LifeTechnologies)accordingtopreviousprotocols.(CandD)HCT116wild-type(p53+/+)andknockoutcells(p53−/−)weretransfectedwithHCoVSARS DNAandRNAreplicons.p53expressioninSW480cellswasinducedbyadding100ng/mLDOX(DOX+)24hbeforetransfection.SW480cellswithoutDOX induction(DOX−)wereappliedascontrol.pBAC-SARS-Rep-R(enilla)LucDNAwastransfectedintocellsusingLipofectamine3000,andRenillaluciferaseac- tivitywasmeasured from celllysates after 24 h.ThepBAC-SARS-Rep-M(etridia)Luc RNA was cotransfected with N-RNA by electroporationof cells, and Metridianluciferaseactivitywasdeterminedfrommediumsupernatantafter20h(*P<0.05,**P<0.01,***P<0.001). interacts with CAMK2D, although it does not disturb phosphory- MaterialsandMethods lation of RCHY1 by CAMK2D. However, RCHY1 is neither the PlasmidConstructs.Thefragmentsc-Myc-YFPN(aminoacids1–155)andHA- only substrate nor the only interacting partner of CAMK2D. The YFPC(aminoacids156–239)wereamplifiedwithdesignedprimers(TableS1) association of SUD and CAMK2D might alter the affinity of from the template plasmids pSPYNE-35Sand pSPYCE-35S(37), respectively. CAMK2Dforotherproteins,e.g.,foritscandidatebindingpartner TheobtainedPCRfragmentsweresubsequentlyclonedintothepTREX-dest30- IFN-γ receptor2(IFNGR2),whichwasdiscoveredbyY2Hscreen PrAGateway-compatiblevectorviaAgeI/XhoIcleavagesitesorintothepTREX- (53). Alternatively, the interaction between SUD and CAMK2D dest30-ct-PrAGateway-compatiblevector(60)viaSpeI/ApaIsitestoreplacethe might interfere with phosphorylation of STAT1 by CAMK2D, proteinAtag,yieldingpDEST-c-Myc-YFPN(c-Myc-YFPNfusedtoNterminusof which is required for maximum IFN-γ–stimulated gene (ISG) atestgene)andpDEST-HA-YFPc(HA-YFPCfusedtoNterminusofatestgene) expression (54). In addition to stimulation of p53 degradation, orpDEST-ct-c-Myc-YFPN(c-Myc-YFPNfusedtoCterminusofatestgene)and pDEST-ct-HA-YFPc(HA-YFPCfusedtoCterminusofatestgene)split-YFPvectors. SUD probably features even more complex interferences with SUD,RCHY1,MERS-CoVMC,SARS-CoVPLpro,MERS-CoVPLpro,NL63PLP1/2,and host cellular signaling pathways. thetruncatedfragmentsofSUDandRCHY1amplifiedwithcorrespondingprimers To date, p53 was found to serve as an antiviral factor against (TableS1)werefirstBPGateway-clonedintothepDONR207vectorandconse- diversepositive-sensesingle-strandedRNA(ssRNA)virusessuch quentlyLRGateway-clonedintothepDEST-c-Myc-YFPN,pDEST-HA-YFPc,pDEST-ct- ashepatitisCvirus(HCV)andpoliovirus;negative-sensessRNA c-Myc-YFPN, pDEST-ct-HA-YFPc vectors, yielding constructs for split-YFP assays. virusessuchasinfluenzaAvirus;andtheretrovirusHIV-1(29,31, CAMK2Dandp53wereselectedfromahumancDNAlibraryof5,000different, 55,56).p53antiviralactivityonSendaivirusreplicationwasreported individuallyclonedgenesinpDONR223vectors,asdescribedbefore(34).CAMK2D in the context of deubiquitination of MDM2 by coronaviral PLpro andp53werethenclonedfrompDONR223tosplit-YFPvectorsviatheLRreaction. andubiquitinationofp53byMDM2(30).Inthismainlybiochemical To generate RFP- or GFP-tagged constructs, the RFP and GFP fragments Y G study,theinhibitoryeffectofp53wasnottestedforcoronaviruses. withoutNLS(nuclearlocalizationsignal)wereamplifiedwithdesignedprimers O L TheauthorshadhypothesizedregulatoryinfluenceofHCoV-NL63 (Table S1) from the template plasmids pNLS-TagRFP and pNLS-TagGFP, re- BIO PLP2onthestabilityofMDM2,due(i)tostructuralsimilaritiesof spectively(61).ThePCRproductsweresubsequentlyclonedintopTREX-dest30- RO PLP2,PLpro,andthecellulardeubiquitinaseHAUSP,and(ii)tothe PrAviaAgeI/XhoIsitesorintopTREX-dest30-ct-PrAviaSpeI/ApaIsitestoreplace MIC preferential deubiquitination of MDM2 by HAUSP. Indeed, the protein A tag, yielding pDEST-RFP and pDEST-GFP or pDEST-ct-RFP and interactionofPLP2andMDM2,deubiquitinationofMDM2by pDEST-ct-GFPGateway-compatibledestinationvectors.RCHY1,SUD,SARS-CoV PLpro, SUD–PLpro fusion, MERS-CoV PLpro, NL63 PLP1/2, and p53 were sub- PLP2, and ubiquitination of p53 leading to proteasomal deg- sequentlyclonedintotheobtainedRFP-andGFP-taggeddestinationvectorsvia radation was demonstrated. Applyingunbiasedprotein–proteininteractionY2Hscreens(34), the LRreaction.CDK9 was selected from the human cDNA librarydescribed aboveand,finally,LRGateway-clonedintothepDEST-ct-GFPvector,yieldingthe we identified interaction of SUD with the cellular ubiquitin ligase CDK9–GFPfusionconstruct.ThepDEST-C-tag-HAandpDEST-N-tag-HAGateway- RCHY1, which exerts similar ubiquitination activities on p53 as compatible destination vectors were used to generate HA-tagged fusions. MDM2. We directly demonstrate, to our knowledge for the first Ubiquitinwasamplifiedwithdesignedprimers(TableS1)fromthesynthesized time,thatp53inhibitsreplicationofcoronavirusesandprovideevi- firstcDNAofHEK293cellsandclonedintothepDONR207vectorviatheBP dencethatSUDandPLpro/PLPsantagonizethehostdefensefactor reaction.CalmodulinwasselectedfromthehumancDNAlibraryasdescribed p53viastabilizingtheE3ubiquitinligaseRCHY1.Sofar,wehave above.Ubiquitin,calmodulin,CAMK2D,RCHY1,SUD–PLpro,andSARS-CoVPLpro nohintsonaconceivableinvolvementofMDM2,thoughitmaywell werefinallyclonedintopDEST-HAorpDEST-ct-HAvectorsviatheLRreaction. bethatCoVshavedevelopeddifferentwaystodown-regulatep53. In addition, the deISGylating activity, exhibited by PLpro do- CellCulturesandTransfection.HEK293andHCT116p53+/+/p53−/−cellswere mains, might further interfere with the ISGylation status of host culturedatstandardconditions(SIMaterialsandMethods).Forintroductionof proteins (57, 58). Decreased ISGylation of host proteins seems to theACE2receptorintoHCT116p53+/+andp53−/−,cells2×105cells/mLwere positively mediate virus infection. It has been demonstrated that transducedwithhumanACE2-carryinglentivirusesatanMOIof0.005.Lenti- viruseswereprovidedinMcCoy’s5Asupplementedwithpolybrene(1μg/mL). cellularISGylationcontributestoinhibitionofreplicationofmurine After48h,thesupernatantwasremoved,cellswerewashedwithPBS,and hepatitis virus strain 3 (59). Thus, CoV Nsp3 proteins containing McCoy’s5Acontaining1μg/mLpuromycinwasaddedforselection.Selective SUDPLpro/PLPscounteractthehostdefenseintwodistinctman- mediumwaschangedevery3d.After10d,survivingcellswereexpandedand ners—oneisp53independent:thePLpro/PLPswithinNsp3exerta tested for hACE2 protein expression by immunofluorescence assay and directdeISGylationactivitytointerferewithcellularISGylation;the Westernblotanalysisasdescribedpreviously(62). otherisp53dependent:Nsp3proteinsleadtop53degradationby stabilizing RCHY1. These results may open new possibilities to Split-YFP. Fluorescence microscopy was performed according to standard therapeuticallytargetSARSinfectionsinthefuture. proceduresandisdescribedindetailinSIMaterialsandMethods. Ma-Laueretal. PNAS | PublishedonlineAugust12,2016 | E5199 protocol under native conditions (SI Materials and Methods). Detailed Westernblotprotocolsweredescribedelsewhere(63). qPCR.QuantificationNL63viralRNA(63)andofcellularmRNAsisdescribed indetailinSIMaterialsandMethods. InVivoUbiquitinationAssay.PlasmidsexpressingHA-taggedubiquitin,c-Myc- YFPN-tagged RCHY1 (c-Myc-YFPN-RCHY1), substrate protein (GFP control or p53-GFP),andeffectorprotein(RFPcontrol,SUD–RFPfusion,RFP-SUD–PLpro fusion,orRFP–PLprofusion)werecotransfectedintoHEK293cellsusingthe polyethylenimine(PEI)method.At24hposttransfection,cellswerelysedwith lysisbuffercontaining10mMTris·HCl(pH7.5),150mMNaCl,0.5mMEDTA, 0.5%NonidetP-40,10mMN-ethylmaleimide,andproteaseinhibitor(Com- pleteULTRATablets;Roche).Subsequently,GFP-Trap_Abeads(ChromoTek) wereusedtopurifyGFPandp53-GFPfromthecelllysates.ThepurifiedGFP and p53-GFPwereexaminedwith anti-HAand anti-GFP(ChromoTek) anti- bodiesbyWesternblotforthetestofinvivoubiquitinationofp53. InVitroDeubiquitinationAssay. HEK293cellsgrowingon10-cmdisheswere cotransfectedwithGFP-RCHY1,HA-ubiquitin,calmodulin1-RFP,andCAMK2D-c- Myc-YFPN. At 23 h posttransfection, cells were treated with PMA to a final concentrationof20ng/mLandionomycintoafinalconcentrationof1μMto activateCAMK2D.At90minafterthetreatment,cellswereharvestedandGFP- RCHY1proteinwaspurifiedwithGFP-trap_Abeads(ChromoTek).Thepurified bead-boundGFP-RCHY1wassubsequentlyincubatedwith10μMSARS-CoVPLpro proteinat25 °Cfor30 mininabuffercontaining10 mMTris·HCl(pH7.5), 150mMNaCl,0.5mMEDTA,and2μMDTT.Afterincubation,thebeadswere washedtwicewithwashingbuffercontaining10mMTris·HCl(pH7.5),150mM NaCl,and0.5mMEDTA.Thebead-boundGFP-RCHY1wasfinallyexaminedwith anti-HAandanti-GFP(ChromoTek)antibodiesbyWesternblot. Purification of Recombinant SARS-CoV PLpro. The PLpro of SARS-CoV (strain TOR2;GenBankaccessionno.AY274119)ispartofNsp3andcomprises319aa residues,correspondingtoGlu1541–Tyr1859ofpp1a.Agenecodingforthe PLpro was amplified by the PCR using the forward primer 5′-CTAGCTAGC- GAGGTTAAGACTATAAAAGTGTTC-3′andthereverseprimer5′-CCGCTCGAGT TAATACGACACAGGCTTGATGGTTGTAG-3′. The resulting PCR product was digested with restriction enzymes NheI and XhoI for ligation into pET-28a (Novagen).CloningwasdesignedtoincludeanN-terminalhexahistidine(His6) tagandathrombincleavagesite.Therecombinantplasmidwasverifiedby DNAsequencing.ExpressionofthePLprogeneandpurificationoftheprotein werecarriedoutbyamethoddescribedpreviously(64). InVivoKinaseActivityAssay.Plasmidsexpressingcalmodulin-HA,CAMK2D-c- Myc-YFPN,substrateprotein(GFPcontrolorGFP–RCHY1),andeffectorprotein (RFPcontrolorSUD–RFPfusion)werecotransfectedintoHEK293cellsusingthe PEImethod.Mediumwaschanged20hposttransfection.Thenthecellswere treatedwithPMAtoafinalconcentrationof20ng/mLandionomycintoafinal concentrationof1μM.Twohoursafterthetreatment,cellswereharvestedand GFP-trap_Abeads(ChromoTek)wereusedtopurifyGFPandtheGFP–RCHY1 fusionfromthecelllysates.PurifiedGFPandGFP–RCHY1fusionproteinswere subsequently examined with anti–phospho-Ser/Thr (QIAGEN) and anti-GFP (ChromoTek)antibodiesbyWesternblotforinvivophosphorylation. LuciferaseActivityAssay.TransfectedcellswereharvestedwithRenillaLu- ciferaseAssaySystemKit(Promega).Theluciferaseactivitywasthenmea- suredwithaFLUOstarOPTIMAfluorescenceplatereader(BMGLABTECH). Fig.7. MERSPLproandNL63PLP1/2leadtoaccumulationofRCHY1andp53 degradation.(A)TheindicatedplasmidsweretransfectedtoHEK293cellsgrowing Statistical Analysis. qPCR and luciferase measurement data are shown as in10-cmculturedishes.CoIPwasperformedasdescribedbefore.(B)Theindicated mean±SDoftri-orquadruplicatedvaluesandanalyzedbyone-wayortwo- plasmidsweretransfectedtoHEK293cellsgrowinginasix-wellplate.At24h wayANOVAwithBonferroni´sposttest(orbyttest)usingPrism5(GraphPad posttransfection,cellswerelysed.ThelysateswereWesternblottedwithanti-HA SoftwareInc.).Pvaluesof0.05orlesswereconsideredsignificant. andanti-laminAantibodies.(C)At24 haftertransfectionwiththe indicated plasmidsintoHEK293,cellswereharvestedandWesternblottedwithanti-p53and VirusInfectionExperiments.Cellcultureswereinfectedinquadruplicatewith anti-laminAantibodies.(D)HEK293cellswerecotransfectedwithplasmidsover- eitherSARS-CoV(strainFrankfurt)undVSV(strainIndiana)atamultiplicityof expressingRFP-ACE2andplasmidsoverexpressingGFPcontrolorp53-GFP.At24h infectionof0.001.Aftervirusadsorption,cellswerewashedwithPBSandcell aftertransfection,cellswereinoculatedwithNL63virusesofMOI0.4at37°Cfor culturemediumwasreplenished.Samplesweretakenat0and24hpostinfection. 1h.At24hafterinfectionwithNL63virus,totalRNAwasextractedfromcelllysates. ViralRNAwasextractedbyaMacherey-NagelviralRNAkit.Real-timePCRwas ViralRNAwasanalyzedbyqPCRwithNL63-specificprimersandstandardizedwith RFP-ACE2intensity.Experimentswereperformedinsextuplicates.***P<0.001. performedusingvirus-specificprobesandprimerswiththeOne-StepSuperScript IIIkit(LifeTechnologies)accordingtopreviousprotocols(34). ACKNOWLEDGMENTS.HCT116celllinesandderivativeswerekindlyprovided CoIPandWesternBlot.GFPfusionsandcomplexedproteinswereimmuno- byBertVogelstein(JohnsHopkinsMedicalSchool).Thisworkwassupportedby precipitatedbyGFP-Trap_Abeads(ChromoTek)accordingtomanufacturer’s theBundesministeriumfürBildungundForschungoftheGermanGovernment, E5200 | www.pnas.org/cgi/doi/10.1073/pnas.1603435113 Ma-Laueretal. S U L P S A N ZoonosisNetwork,ConsortiumonEcologyandPathogenesisofSARSProject sitesMunich)ProjectCode8025801803(toA.v.B.);andLübeckProjectCode P Code01KI1005A,F(toA.v.B.);GermanCenterforInfectionResearch(partner 8000204-3(toR.H.). 1. StadlerK,etal.(2003)SARS–beginningtounderstandanewvirus.NatRevMicrobiol 37.WalterM,etal.(2004)Visualizationofproteininteractionsinlivingplantcellsusing 1(3):209–218. bimolecularfluorescencecomplementation.PlantJ40(3):428–438. 2. HilgenfeldR,PeirisM(2013)FromSARStoMERS:10yearsofresearchonhighly 38.JohnsonMA,ChatterjeeA,NeumanBW,WüthrichK(2010)SARScoronavirusunique pathogenichumancoronaviruses.AntiviralRes100(1):286–295. domain:Three-domainmoleculararchitectureinsolutionandRNAbinding.JMolBiol 3. GrahamRL,DonaldsonEF,BaricRS(2013)AdecadeafterSARS:Strategiesforcon- 400(4):724–742. trollingemergingcoronaviruses.NatRevMicrobiol11(12):836–848. 39.BarrettoN,etal.(2005)Thepapain-likeproteaseofsevereacuterespiratorysyn- 4. Ma-LauerY,LeiJ,HilgenfeldR,vonBrunnA(2012)Virus-hostinteractomes–antiviral dromecoronavirushasdeubiquitinatingactivity.JVirol79(24):15189–15198. drugdiscovery.CurrOpinVirol2(5):614–621. 40.LindnerHA,etal.(2005)Thepapain-likeproteasefromthesevereacuterespiratory 5. Báez-SantosYM,StJohnSE,MesecarAD(2015)TheSARS-coronaviruspapain-like syndromecoronavirusisadeubiquitinatingenzyme.JVirol79(24):15199–15208. protease: Structure, function and inhibition by designed antiviral compounds. 41.LeeJT,GuW(2010)Themultiplelevelsofregulationbyp53ubiquitination.Cell AntiviralRes115:21–38. DeathDiffer17(1):86–92. 6. TanJ,etal.(2009)TheSARS-uniquedomain(SUD)ofSARScoronaviruscontainstwo 42.DuanL,etal.(1994)Thetumorsuppressorproteinp53stronglyaltershumanim- macrodomainsthatbindG-quadruplexes.PLoSPathog5(5):e1000428. munodeficiencyvirustype1replication.JVirol68(7):4302–4313. 7. KusovY,TanJ,AlvarezE,EnjuanesL,HilgenfeldR(2015)AG-quadruplex-binding 43.BrownC,KowalczykAM,TaylorER,MorganIM,GastonK(2008)P53represseshuman macrodomainwithinthe“SARS-uniquedomain”isessentialfortheactivityofthe papillomavirustype16DNAreplicationviatheviralE2protein.VirolJ5:5. SARS-coronavirusreplication-transcriptioncomplex.Virology484:313–322. 44.BunzF,etal.(1998)Requirementforp53andp21tosustainG2arrestafterDNA 8. LengRP,etal.(2003)Pirh2,ap53-inducedubiquitin-proteinligase,promotesp53 damage.Science282(5393):1497–1501. degradation.Cell112(6):779–791. 45.Bailey-ElkinBA,etal.(2014)CrystalstructureoftheMiddleEastrespiratorysyndrome 9. JungYS,QianY,ChenX(2011)Thep73tumorsuppressoristargetedbyPirh2RING coronavirus(MERS-CoV)papain-likeproteaseboundtoubiquitinfacilitatestargeted fingerE3ubiquitinligasefortheproteasome-dependentdegradation.JBiolChem disruptionofdeubiquitinatingactivity todemonstrateitsroleininnateimmune 286(41):35388–35395. suppression.JBiolChem289(50):34667–34682. 10.JungYS,QianY,YanW,ChenX(2013)Pirh2E3ubiquitinligasemodulateskerati- 46.ClementzMA,etal.(2010)Deubiquitinatingandinterferonantagonismactivitiesof nocytedifferentiationthroughp63.JInvestDermatol133(5):1178–1187. coronaviruspapain-likeproteases.JVirol84(9):4619–4629. 11.HalabyMJ,HakemR,HakemA(2013)Pirh2:AnE3ligasewithcentralrolesinthe 47.MielechAM,KilianskiA,Baez-SantosYM,MesecarAD,BakerSC(2014)MERS-CoVpapain- regulationofcellcycle,DNAdamageresponse,anddifferentiation.CellCycle12(17): likeproteasehasdeISGylatinganddeubiquitinatingactivities.Virology450-451:64–70. 2733–2737. 48.HakemA,etal.(2011)RoleofPirh2inmediatingtheregulationofp53andc-Myc. 12.AbouZeinabR,WuH,SergiC,LengRP(2013)Residues240-250intheC-terminusof PLoSGenet7(11):e1002360. thePirh2proteincomplementthefunctionoftheRINGdomaininself-ubiquitination 49.BohgakiM,etal.(2013)TheE3ligasePIRH2polyubiquitylatesCHK2andregulatesits ofthePirh2protein.PLoSOne8(12):e82803. turnover.CellDeathDiffer20(6):812–822. 13.ChenM,etal.(2005)Inhibitionofubiquitinationandstabilizationofhumanubiq- 50.JungYS,LiuG,ChenX(2010)Pirh2E3ubiquitinligasetargetsDNApolymeraseeta uitinE3ligasePIRH2bymeaslesvirusphosphoprotein.JVirol79(18):11824–11836. for20Sproteasomaldegradation.MolCellBiol30(4):1041–1048. 14.DuanS,etal.(2007)PhosphorylationofPirh2bycalmodulin-dependentkinaseII 51.LoganIR,etal.(2006)HumanPIRH2enhancesandrogenreceptorsignalingthrough impairsitsabilitytoubiquitinatep53.EMBOJ26(13):3062–3074. inhibitionofhistonedeacetylase1andisoverexpressedinprostatecancer.MolCell 15.HookSS,MeansAR(2001)Ca(2+)/CaM-dependentkinases:Fromactivationtofunc- Biol26(17):6502–6510. tion.AnnuRevPharmacolToxicol41:471–505. 52.HattoriT,etal.(2007)Pirh2promotesubiquitin-dependentdegradationofthecyclin- 16.HasosoelcziaAti,oNnadironmAaCi,nKoufriCyaa2n+J/c(2a0lm03o)dCurlyinst-adlespteruncdteunretokifnaasteetIrIa.dMeocalmCeelrlic11a(s5s)e:m12b4l1y–o1f2t5h1e. dependentkinaseinhibitorp27Kip1.CancerRes67(22):10789–10795. 53.WangJ,etal.(2011)Towardanunderstandingoftheproteininteractionnetworkof 17.Colbran RJ (2004) Targeting of calcium/calmodulin-dependent protein kinase II. BiochemJ378(Pt1):1–16. 54.NthaeirhJuSm,eatnalli.v(e2r0.0M2o)lRSeyqsutiBreiomle7n:5t3o6f.Ca2+andCaMKIIforStat1Ser-727phosphory- 18.BtuiemgoinugrsKuTp,pMreessllioonS.SN,aAttRtaervdCiaLnDce(2r01144(5))U:3n5r9a–v3e7l0li.ngmechanismsofp53-mediated lationinresponsetoIFN-gamma.ProcNatlAcadSciUSA99(9):5971–5976. 55.DharelN,etal.(2008)Potentialcontributionoftumorsuppressorp53inthehost 19.HüntenS,etal.(2015)p53-regulatednetworksofprotein,mRNA,miRNA,andlncRNA defenseagainsthepatitisCvirus.Hepatology47(4):1136–1149. expressionrevealedbyintegratedpulsedstableisotopelabelingwithaminoacidsin 56.PampinM,SimoninY,BlondelB,PercherancierY,Chelbi-AlixMK(2006)Crosstalk cell culture (pSILAC) and next generation sequencing (NGS) analyses. Mol Cell 2201..HPpHr5aoo3unt.pedNtoaamYRt,ui,cMrTseaa1n3y4aa8(1k7R0a(,6):H6K23,a60Yz0)a9a:2z–su92A66d,–2aO29H9.re9(n.19M97()19O9n7c)oMprdomte2inprMoDmMot2esisthaeurbaiqpuiditdineglirgaadsaetEio3nfoofr 57.bJaBneáVtdeiwrzso-euSleba8nns0tt(Pro1aMs7te)YL:8Msa5pn,8edM2ci–pfi8ie5c5li3et9yc2dh.ouAfritnMhge,DppoealnpiogaviXnir,-ulBiskaienkepferrcoStt,ieoManse:esImedcopamlricAaaiDtnio(on2f0sn1fso4p)r3CafanrttoaimvlyirttaihcledfueMnfeicdtnidoslene. BIOLOGY tumorsuppressorp53.FEBSLett420(1):25–27. Eastrespiratorysyndromecoronavirus.JVirol88(21):12511–12527. RO 58.RatiaK,KilianskiA,Baez-SantosYM,BakerSC,MesecarA(2014)Structuralbasisfor C 22.ShloushJ,etal.(2011)StructuralandfunctionalcomparisonoftheRINGdomainsof MI twop53E3ligases,Mdm2andPirh2.JBiolChem286(6):4796–4808. theubiquitin-linkagespecificityanddeISGylatingactivityofSARS-CoVpapain-like 23.LiM,etal.(2003)Mono-versuspolyubiquitination:Differentialcontrolofp53fateby protease.PLoSPathog10(5):e1004113. Mdm2.Science302(5652):1972–1975. 59.MaXZ,etal.(2014)Proteininterferon-stimulatedgene15conjugationdelaysbut 24.BagashevA,etal.(2013)Cdk9phosphorylatesPirh2proteinandpreventsdegrada- doesnotovercomecoronavirusproliferationinamodeloffulminanthepatitis.JVirol tionofp53protein.CellCycle12(10):1569–1577. 88(11):6195–6204. 25.MayaR,etal.(2001)ATM-dependentphosphorylationofMdm2onserine395:rolein 60.KatzenF(2007)Gateway(cid:1)recombinationalcloning:Abiologicaloperatingsystem. p53activationbyDNAdamage.GenesDev15(9):1067–1077. ExpertOpinDrugDiscov2(4):571–589. 26.ClaudioPP,etal.(2006)Cdk9phosphorylatesp53onserine392independentlyof 61.DambacherS,etal.(2012)CENP-CfacilitatestherecruitmentofM18BP1tocentro- CKII.JCellPhysiol208(3):602–612. mericchromatin.Nucleus3(1):101–110. 27.SatoY,TsurumiT(2013)Genomeguardianp53andviralinfections.RevMedVirol 62.MüllerMA,etal.(2012)HumancoronavirusEMCdoesnotrequiretheSARS-coro- 23(4):213–220. navirusreceptorandmaintainsbroadreplicativecapabilityinmammaliancelllines. 28.VogelsteinB,LaneD,LevineAJ(2000)Surfingthep53network.Nature408(6810):307–310. MBio3(6):e00515-12. 29.MukerjeeR,ClaudioPP,ChangJR,DelValleL,SawayaBE(2010)Transcriptional 63.Carbajo-LozoyaJ,etal.(2014)HumancoronavirusNL63replicationis cyclophilin regulationofHIV-1geneexpressionbyp53.CellCycle9(22):4569–4578. A-dependent and inhibited by non-immunosuppressive cyclosporine A-derivatives 30.YuanL,etal.(2015)p53degradationbyacoronaviruspapain-likeproteasesup- includingAlisporivir.VirusRes184:44–53. pressestypeIinterferonsignaling.JBiolChem290(5):3172–3182. 64.LeiJ,etal.(2014)Crystalstructureofthepapain-likeproteaseofMERScoronavirus 31.Muñoz-FontelaC,etal.(2011)p53servesasahostantiviralfactorthatenhancesinnate revealsunusual,potentiallydruggableactive-sitefeatures.AntiviralRes109:72–82. andadaptiveimmuneresponsestoinfluenzaAvirus.JImmunol187(12):6428–6436. 65.SchneiderCA,RasbandWS,EliceiriKW(2012)NIHImagetoImageJ:25yearsofimage 32.SahaA,etal.(2009)Epstein-Barrvirusnuclearantigen3CaugmentsMdm2-mediated analysis.NatMethods9(7):671–675. p53ubiquitinationanddegradationbydeubiquitinatingMdm2.JVirol83(9):4652–4669. 66.TsukamotoT,etal.(2000)Visualizationofgeneactivityinlivingcells.NatCellBiol 33.SatoY,etal.(2009)Degradationofphosphorylatedp53byviralprotein-ECSE3ligase 2(12):871–878. complex.PLoSPathog5(7):e1000530. 67.HerceHD,DengW,HelmaJ,LeonhardtH,CardosoMC(2013)Visualizationand 34.PfefferleS,etal.(2011)TheSARS-coronavirus-hostinteractome:Identificationof targeteddisruptionofproteininteractionsinlivingcells.NatCommun4:2660. cyclophilinsastargetforpan-coronavirusinhibitors.PLoSPathog7(10):e1002331. 68.RothbauerU,etal.(2006)Targetingandtracingantigensinlivecellswithfluorescent 35.Hubner NC, et al. (2010) Quantitative proteomics combined with BAC Trans- nanobodies.NatMethods3(11):887–889. geneOmicsrevealsinvivoproteininteractions.JCellBiol189(4):739–754. 69.JackstadtR,etal.(2013)AP4isamediatorofepithelial-mesenchymaltransitionand 36.KeilhauerEC,HeinMY,MannM(2015)Accurateproteincomplexretrievalbyaffinity metastasisincolorectalcancer.JExpMed210(7):1331–1350. enrichmentmassspectrometry(AE-MS)ratherthanaffinitypurificationmassspec- 70.SiemensH,etal.(2011)miR-34andSNAILformadouble-negativefeedbackloopto trometry(AP-MS).MolCellProteomics14(1):120–135. regulateepithelial-mesenchymaltransitions.CellCycle10(24):4256–4271. Ma-Laueretal. PNAS | PublishedonlineAugust12,2016 | E5201

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.