EDWARD BROWN P L A N E T S A N D T E L E S C O P E S Aboutthecover: animageofRheaoccultingSaturn,ascapturedbytheCassinispacecraft. Credit: CassiniImagingTeam,SSI,JPL,ESA,NASA (cid:12)2017EdwardBrown gitversiona9b854e4… (cid:0)(cid:1)(cid:4)(cid:2) Exceptwhereexplicitlynoted,thisworkislicensedundertheCreativeCommonsAttribution-NonCommercial- ShareAlike4.0International(CCBY-NC-SA4.0)license. Preface Thesenoteswerewrittenwhileteachingasophomore-levelastronomy course,“PlanetsandTelescopes”atMichiganStateUniversityduring SpringSemestersof2015and2016. Thebackgroundrequiredisintro- ductorycalculusandfreshman-levelphysics. Inthefirstyear,themaintextwasLissaueranddePater,Bennett etal.1;inthesecondyear,weswitchedtoRydenandPeterson2andTay- 1JackJ.LissauerandImkedePater. lor3andincreasedtheamountoftimespentonbasicsofastronomical FundamentalPlanetaryScience:Physics, ChemistryandHabitability. Cambridge observationandstatisticalanalysis. Someofthenotesandexerciseson UniversityPress,2013;andJeffreyO. statisticsarewrittenintheformofJupyterNotebooks;theseareinthe Bennett,MeganO.Donahue,Nicholas Schneider,andMarkVoit. TheCosmic folderstatistics/notebooks. Perspective. Addison-Wesley,7thedition, Thetextlayoutusesthetufte-book(https://tufte-latex. 2013 github.io/tufte-latex/)LATEXclass: themainfeatureisalargeright 2BarbaraRydenandBradleyM.Peterson. FoundationsofAstrophysics. Addison- margininwhichthestudentscantakenotes;thismarginalsoholds Wesley,2010 smallfiguresandsidenotes. Exercisesareembeddedthroughoutthetext. 3JohnR.Taylor. AnIntroductiontoError Theserangefrom“readingexercises”tolonger,morechallengingprob- Analysis. UniversityScienceBooks, Sausalito,CA,2ndedition,1997 lems. Becausetheexercisesareembeddedwiththetext,alistofexercises isprovidedinthefrontmattertohelpwithlocatingmaterial. Inthecourse,aboutthreeweekswerespentcoveringthematerialin AppendixC,“ProbabilityandStatistics”. Thiswasdonebetweencovering Chapter2,“LightandTelescopes”andChapter4,“DetectionofExoplan- ets”. Thisorderingwasdrivenbythedesiretokeepthelecturesandlabs synchronizedasmuchaspossible. InChapter1,“Coordinates”,severalof theexercisesrefertothenightskyasviewedfrommid-Michiganinlate January. Iamgratefulformanyconversationswith,andcriticalfeedbackfrom, Prof.LauraChomiuk,whotaughtthelabsectionofthiscourse,graduate teachingassistantsLauraShishkovskyandAlexDeibel,andundergrad- uatelearningassistantsEdwardBuieIII,AndrewBundas,ClaireKopen- hafer,PhamNguyen,andHueiSears. Thesenotesarebeingcontinuouslyrevised;torefertoaspe- cificversionofthenotes,pleaseusetheeight-characterstamplabeled “gitversion”onthefrontpage. Contents 1 Coordinates: SpecifyingLocationsontheSky 1 2 LightandTelescopes 7 3 Spectroscopy 13 4 DetectionofExoplanets 19 5 BeyondKepler’sLaws 25 6 PlanetaryAtmospheres 31 A ConstantsandUnits 39 B MathematicsReview 41 C ProbabilityandStatistics 45 Bibliography 63 List of Figures 1.1 Thecelestialsphere 1 1.2 Theecliptic 2 1.3 Rightascensionanddeclination 3 1.4 ThemovementoftheEarthfromnoontonoon 4 1.5 Theparallaxangleofastar 5 1.6 Angulardistancebetweentwopointsonasphere 5 1.7 Angulardistancebetweenlinesofconstantrightascension 6 2.1 Theelectricforceinalightwave 8 2.2 Top: reflectionoflightfromasurface. Bottom: refractionoflightasit passesfromamediumwithindexn intoamediumwithindexn . 9 1 2 2.3 Changeinangularsizeofanobjectinwater. 9 2.4 Aplanewaveincidentonadetector 10 2.5 Additionofvectorswithphasedifferences 11 2.6 Illustrationofairmass 12 3.1 Spectrallinesofneutralhydrogen. 14 3.2 Adiffractiongrating. 15 3.3 Takingaspectrumofanastronomicalobject. 16 3.4 Schematicofthedopplereffect 18 4.1 Centerofmass 20 4.2 Orbitalelements 21 4.3 Schematicoftheinclinationofaplanetaryorbit 21 4.4 Schematicofaplanetarytransit 22 4.5 Schematicoftheprobabilitydistributionoforbitalinclination 22 5.1 Fourfreelyfallingbodies 25 5.2 TidalforceontheEarth 26 5.3 Componentsofthetidalforce 26 5.4 TorqueontheEarth’stidalbulge 27 5.5 Polarcoordinates 27 5.6 Changeinunitvectorsunderrotation 27 5.7 Movementonamerry-go-round 28 viii 5.8 LagrangepointsforasystemwithM =0:1M . 29 2 1 6.1 Afluidelementinhydrostaticequilibrium 31 6.2 Themassofacolumnoffluid 32 6.3 Motioninahorizontallayerinasmallregionatlatitudeλ. 36 6.4 Forcesonaparcelofaircirculatingaboutalow. 36 B.1 Constructionfromtheunitcircle 41 B.2 Schematicoftheadditionoftwoangles 42 C.1 Sets 47 C.2 Thecomplementofaset 47 C.3 Theunionoftwosets 47 C.4 Theintersectionoftwosets 47 C.5 ThePoissondistribution 53 C.6 Normaldistributionswithdifferentmeans 57 C.7 Normaldistributionswithdifferentstandarddeviations 57 C.8 Proabilityregionsforoneandtwostandarddeviations 58 List of Exercises 1.1 AltitudeofBetelgeuse 2 1.2 CurrentrightascensionoftheSunandBetelgeuse 3 1.3 Coordinatesystems 3 1.4 Currentsiderealtime 4 1.5 AngularsizeofthePleiades 6 2.1 Relationbetweenmagnitudeandflux 8 2.2 TheB(cid:0)Vindex 8 2.3 Magnificationofanobjectinwater 9 2.4 Diffractionofimageofapointsource 11 2.5 Resolvingpowerofvariousinstruments 11 2.6 Angularsizeofstar,planet 12 3.1 Lightsensitivityofhumaneye 13 3.2 Diffractionbyacompactdisk 15 3.3 DispersionoftheGoodmanspectrograph 16 3.4 Dopplershiftofradarbeam 18 4.1 Meandistancetostarinasample 19 4.2 Ratiooffluxfromplanet,star 19 4.3 Resolvingplanets 19 4.4 Center-ofmassforSun-Jupiter 20 4.5 OrbitalspeedoftheSun 21 4.6 DopplershiftofSun 21 4.7 Inclinationrequiredtoobservetransit 22 4.8 Mass-functionanddistributionofmasses 23 4.9 Fractionoforbitintransit 23 5.1 Demonstrationoftidalacceleration 25 5.2 Radialcomponentoftidalforce 26 5.3 Coriolisaccelerationonmerry-go-round 28 5.4 VanishingaccelerationatL 29 4 5.5 HillradiusoftheSun-Jupitersystem 29 5.6 OverflowofRochelobe 29 x 6.1 Pressureincreaseinwater 31 6.2 Scaleheightfordryair 33 6.3 Adiabaticlapserate 35 6.4 Coriolisvs.centripetalaccelerationaroundariverbend 36 6.5 Scaleofmid-latitudeweathersystems 36 6.6 Whythestrongeststormsareassociatedwithlow-pressuresystems 37 C.1 Meaningof“probability” 46 C.2 Probabilityofvariousdrawsfromadeckofcards 47 C.3 Probabilityoftwoeventsthatarenotmutuallyexclusive 48 C.4 RecurrencerelationofPascal’striangle 49 C.5 Probabilityofdrawingaflush 50 C.6 Probabilitydistributionforacoinflip 51 C.7 Scoreforrandomguessingonamultiple-choiceexam 51 C.8 Probabilityofmatchingbirthdays 54 C.9 RecurrencerelationsforPoissondistribution 56 C.10Expectationvalueofstandarddeviation 59 C.11Propagationofuncertainties 60 C.12Illustrationoferrorinthemean 61
Description: