ebook img

Vectors, Pure and Applied: A General Introduction to Linear Algebra PDF

457 Pages·2013·1.55 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Vectors, Pure and Applied: A General Introduction to Linear Algebra

more information - www.cambridge.org/9781107033566 VECTORS, PURE AND APPLIED AGeneralIntroductiontoLinearAlgebra Many books on linear algebra focus purely on getting students through exams, but this text explains both the how and the why of linear algebra and enables students to begin thinking like mathematicians. The author demonstrates how different topics (geometry, abstract algebra, numerical analysis, physics) make use of vectors in different ways, and howthesewaysareconnected,preparingstudentsforfurtherworkintheseareas. The book is packed with hundreds of exercises ranging from the routine to the challenging.Sketchsolutionsoftheeasierexercisesareavailableonline. t. w. ko¨rner isProfessorofFourierAnalysisintheDepartmentofPureMathematics and Mathematical Statistics at the University of Cambridge. His previous books include FourierAnalysisandThePleasuresofCounting. VECTORS, PURE AND APPLIED A General Introduction to Linear Algebra T. W. KO¨ RNER TrinityHall,Cambridge cambridge university press Cambridge,NewYork,Melbourne,Madrid,CapeTown, Singapore,Sa˜oPaulo,Delhi,MexicoCity CambridgeUniversityPress TheEdinburghBuilding,CambridgeCB28RU,UK PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork www.cambridge.org Informationonthistitle:www.cambridge.org/9781107033566 (cid:2)C T.W.Ko¨rner2013 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2013 PrintedandboundintheUnitedKingdombytheMPGBooksGroup AcataloguerecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloguinginPublicationdata Ko¨rner,T.W.(ThomasWilliam),1946– Vectors,pureandapplied:ageneralintroductiontolinearalgebra/T.W.Ko¨rner. pages cm Includesbibliographicalreferencesandindex. ISBN978-1-107-03356-6(hardback)–ISBN978-1-107-67522-3(paperback) 1.Vectoralgebra. 2.Algebras,Linear. I.Title. QA200.K67 2013 516(cid:3).182–dc23 2012036797 ISBN978-1-107-03356-6Hardback ISBN978-1-107-67522-3Paperback Additionalresourcesforthispublicationatwww.dpmms.cam.ac.uk/∼twk/ CambridgeUniversityPresshasnoresponsibilityforthepersistenceor accuracyofURLsforexternalorthird-partyinternetwebsitesreferredto inthispublication,anddoesnotguaranteethatanycontentonsuch websitesis,orwillremain,accurateorappropriate. Ingeneralthepositionasregardsallsuchnewcalculiisthis.–Thatonecannotaccomplishbythem anythingthatcouldnotbeaccomplishedwithoutthem.However,theadvantageis,that,providedthat suchacalculuscorrespondstotheinmostnatureoffrequentneeds,anyonewhomastersitthoroughly isable–withouttheunconsciousinspirationwhichnoonecancommand–tosolvetheassociated problems,eventosolvethemmechanicallyincomplicatedcasesinwhich,withoutsuchaid,even geniusbecomespowerless....Suchconceptionsunite,asitwere,intoanorganicwhole,countless problemswhichotherwisewouldremainisolatedandrequirefortheirseparatesolutionmoreorless ofinventivegenius. (GaussWerke,Bd.8,p.298(quotedbyMoritz[24])) For many purposes of physical reasoning, as distinguished from calculation, it is desirable to avoid explicitly introducing ...Cartesian coordinates, and to fix the mind at once on a point of spaceinsteadofitsthreecoordinates,andonthemagnitudeanddirectionofaforceinsteadofits threecomponents....Iamconvincedthattheintroductionoftheidea[ofvectors]willbeofgreat usetousinthestudyofallpartsofoursubject,andespeciallyinelectrodynamicswherewehaveto dealwithanumberofphysicalquantities,therelationsofwhichtoeachothercanbeexpressedmuch moresimplyby[vectorialequationsrather]thanbytheordinaryequations. (MaxwellATreatiseonElectricityandMagnetism[21]) We [Halmos and Kaplansky] share a love of linear algebra. ...And we share a philosophy about linearalgebra:wethinkbasis-free,wewritebasis-free,butwhenthechipsaredownweclosethe officedoorandcomputewithmatriceslikefury. (KaplanskyinPaulHalmos:CelebratingFiftyYearsofMathematics[17]) MarcoPolodescribesabridge,stonebystone. ‘Butwhichisthestonethatsupportsthebridge?’KublaiKhanasks. ‘Thebridgeisnotsupportedbyonestoneoranother,’Marcoanswers,‘butbythelineofthearch thattheyform.’ KublaiKhanremainssilent,reflecting.Thenheadds:‘Whydoyouspeaktomeofthestones?It isonlythearchthatmatterstome.’ Poloanswers:‘Withoutstonesthereisnoarch.’ (CalvinoInvisibleCities(translatedbyWilliamWeaver)[8]) Contents Introduction pagexi PARTI FAMILIARVECTORSPACES 1 1 Gaussianelimination 3 1.1 Twohundredyearsofalgebra 3 1.2 Computationalmatters 8 1.3 Detachedcoefficients 12 1.4 Anotherfiftyyears 15 1.5 Furtherexercises 18 2 Alittlegeometry 20 2.1 Geometricvectors 20 2.2 Higherdimensions 24 2.3 Euclideandistance 27 2.4 Geometry,planeandsolid 32 2.5 Furtherexercises 36 3 Thealgebraofsquarematrices 42 3.1 Thesummationconvention 42 3.2 Multiplyingmatrices 43 3.3 Morealgebraforsquarematrices 45 3.4 Decompositionintoelementarymatrices 49 3.5 Calculatingtheinverse 54 3.6 Furtherexercises 56 4 Thesecretlifeofdeterminants 60 4.1 Theareaofaparallelogram 60 4.2 Rescaling 64 4.3 3×3determinants 66 4.4 Determinantsofn×nmatrices 72 4.5 Calculatingdeterminants 75 4.6 Furtherexercises 81 vii viii Contents 5 Abstractvectorspaces 87 5.1 ThespaceCn 87 5.2 Abstractvectorspaces 88 5.3 Linearmaps 91 5.4 Dimension 95 5.5 Imageandkernel 103 5.6 Secretsharing 111 5.7 Furtherexercises 114 6 LinearmapsfromFntoitself 118 6.1 Linearmaps,basesandmatrices 118 6.2 Eigenvectorsandeigenvalues 122 6.3 Diagonalisationandeigenvectors 125 6.4 LinearmapsfromC2toitself 127 6.5 Diagonalisingsquarematrices 132 6.6 Iteration’sartfulaid 136 6.7 LU factorisation 141 6.8 Furtherexercises 146 7 Distancepreservinglinearmaps 160 7.1 Orthonormalbases 160 7.2 Orthogonalmapsandmatrices 164 7.3 RotationsandreflectionsinR2andR3 169 7.4 ReflectionsinRn 174 7.5 QRfactorisation 177 7.6 Furtherexercises 182 8 Diagonalisationfororthonormalbases 192 8.1 Symmetricmaps 192 8.2 Eigenvectorsforsymmetriclinearmaps 195 8.3 Stationarypoints 201 8.4 Complexinnerproduct 203 8.5 Furtherexercises 207 9 Cartesiantensors 211 9.1 Physicalvectors 211 9.2 GeneralCartesiantensors 214 9.3 Moreexamples 216 9.4 Thevectorproduct 220 9.5 Furtherexercises 227 Contents ix 10 Moreontensors 233 10.1 Sometensorialtheorems 233 10.2 A(very)littlemechanics 237 10.3 Left-hand,right-hand 242 10.4 Generaltensors 244 10.5 Furtherexercises 247 PARTII GENERALVECTORSPACES 257 11 Spacesoflinearmaps 259 11.1 AlookatL(U,V) 259 11.2 AlookatL(U,U) 266 11.3 Duals(almost)withoutusingbases 269 11.4 Dualsusingbases 276 11.5 Furtherexercises 283 12 PolynomialsinL(U,U) 291 12.1 Directsums 291 12.2 TheCayley–Hamiltontheorem 296 12.3 Minimalpolynomials 301 12.4 TheJordannormalform 307 12.5 Applications 312 12.6 Furtherexercises 316 13 Vectorspaceswithoutdistances 329 13.1 Alittlephilosophy 329 13.2 Vectorspacesoverfields 329 13.3 Errorcorrectingcodes 334 13.4 Furtherexercises 340 14 Vectorspaceswithdistances 344 14.1 Orthogonalpolynomials 344 14.2 Innerproductsanddualspaces 353 14.3 Complexinnerproductspaces 359 14.4 Furtherexercises 364 15 Moredistances 369 15.1 DistanceonL(U,U) 369 15.2 Innerproductsandtriangularisation 376 15.3 Thespectralradius 379 15.4 Normalmaps 383 15.5 Furtherexercises 387

Description:
Many books in linear algebra focus purely on getting students through exams, but this text explains both the how and the why of linear algebra and enables students to begin thinking like mathematicians. The author demonstrates how different topics (geometry, abstract algebra, numerical analysis, phy
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.