ebook img

Unit Root Tests in Time Series: Extensions and Developments PDF

586 Pages·2012·3.727 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Unit Root Tests in Time Series: Extensions and Developments

Unit Root Tests in Time Series Volume 2 PalgraveTextsinEconometrics GeneralEditor:KerryPatterson Titlesinclude: SimonP.BurkeandJohnHunter MODELLINGNON-STATIONARYTIMESERIES MichaelP.Clements EVALUATINGECONOMETRICFORECASTSOFECONOMICANDFINANCIALVARIABLES LesleyGodfrey BOOTSTRAPTESTSFORREGRESSIONMODELS TerenceC.Mills MODELLINGTRENDSANDCYCLESINECONOMICTIMESERIES KerryPatterson APRIMERFORUNITROOTTESTING KerryPatterson UNITROOTTESTSINTIMESERIESVOLUME1 KeyConceptsandProblems KerryPatterson UNITROOTTESTSINTIMESERIESVOLUME2 ExtensionsandDevelopments PalgraveTextsinEconometrics SeriesStandingOrderISBN978-1–4039–0172-9hardback 978-1–4039–0173–6paperback(outsideNorthAmericaonly) Youcanreceivefuturetitlesinthisseriesastheyarepublishedbyplacingastandingorder. Please contactyourbookselleror,incaseofdifficulty,writetousattheaddressbelowwithyournameand address,thetitleoftheseriesandtheISBNquotedabove. Customer Services Department, Macmillan Distribution Ltd, Houndmills, Basingstoke, Hampshire RG216XS,England Unit Root Tests in Time Series Volume 2 Extensions and Developments Kerry Patterson ©KerryPatterson2012 Softcover reprint of the hardcover 1st edition 2012 978-0-230-25026-0 Allrightsreserved.Noreproduction,copyortransmissionofthis publicationmaybemadewithoutwrittenpermission. Noportionofthispublicationmaybereproduced,copiedortransmitted savewithwrittenpermissionorinaccordancewiththeprovisionsofthe Copyright,DesignsandPatentsAct1988,orunderthetermsofanylicence permittinglimitedcopyingissuedbytheCopyrightLicensingAgency, SaffronHouse,6–10KirbyStreet,LondonEC1N8TS. Anypersonwhodoesanyunauthorizedactinrelationtothispublication maybeliabletocriminalprosecutionandcivilclaimsfordamages. Theauthorhasassertedhisrighttobeidentifiedastheauthorofthis workinaccordancewiththeCopyright,DesignsandPatentsAct1988. Firstpublished2012by PALGRAVEMACMILLAN PalgraveMacmillanintheUKisanimprintofMacmillanPublishersLimited, registeredinEngland,companynumber785998,ofHoundmills,Basingstoke, HampshireRG216XS. PalgraveMacmillanintheUSisadivisionofStMartin’sPressLLC, 175FifthAvenue,NewYork,NY10010. PalgraveMacmillanistheglobalacademicimprintoftheabovecompanies andhascompaniesandrepresentativesthroughouttheworld. Palgrave®andMacmillan®areregisteredtrademarksintheUnitedStates, theUnitedKingdom,Europeandothercountries ISBN 978-0-230-25027-7 ISBN 978-1-137-00331-7 (eBook) DOI 10.1057/9781137003317 Thisbookisprintedonpapersuitableforrecyclingandmadefromfully managedandsustainedforestsources.Logging,pulpingandmanufacturing processesareexpectedtoconformtotheenvironmentalregulationsofthe countryoforigin. AcataloguerecordforthisbookisavailablefromtheBritishLibrary. AcatalogrecordforthisbookisavailablefromtheLibraryofCongress. 10 9 8 7 6 5 4 3 2 1 21 20 19 18 17 16 15 14 13 12 Contents DetailedContents vi ListofTables xx ListofFigures xxiii SymbolsandAbbreviations xxvii Preface xxix 1 SomeCommonThemes 1 2 FunctionalFormandNonparametricTestsforaUnitRoot 28 3 FractionalIntegration 76 4 Semi-ParametricEstimationoftheLong-MemoryParameter 154 5 SmoothTransitionNonlinearModels 240 6 ThresholdAutoregressions 325 7 StructuralBreaksinARModels 381 8 StructuralBreakswithUnknownBreakDates 436 9 ConditionalHeteroscedasticityandUnitRootTests 497 References 528 AuthorIndex 542 SubjectIndex 546 v Detailed Contents ListofTables xx ListofFigures xxiii SymbolsandAbbreviations xxvii Preface xxix 1 SomeCommonThemes 1 Introduction 1 1.1 Stochasticprocesses 1 1.2 Stationarityandsomeofitsimplications 3 1.2.1 Astrictlystationaryprocess 4 1.2.2 Stationarityuptoorderm 4 1.3 ARMA(p,q)models 6 1.4 Thelong-runvariance 7 1.5 Theproblemofanuisanceparameteronlyidentifiedunder thealternativehypothesis 9 1.5.1 Structuralstability 9 1.5.2 Self-excitingthresholdautoregression(SETAR) 14 1.5.3 Bootstraptheteststatistics 16 1.5.4 Illustration:Hog–cornprice 18 1.5.4.i Chowtestfortemporalstructuralstability 19 1.5.4.ii Thresholdautoregression 20 1.6 Thewayahead 21 Questions 22 2 FunctionalFormandNonparametricTestsforaUnitRoot 28 Introduction 28 2.1 Functionalform:linearversuslogs 30 2.1.1 Arandomwalkandanexponentialrandomwalk 30 2.1.2 Simulationresults 32 2.2 Aparametrictesttodiscriminatebetweenlevelsandlogs 34 2.2.1 Linearandlog-linearintegratedprocesses 34 2.2.2 Teststatistics 35 2.2.2.i TheKMteststatistics 35 2.2.2.ii Criticalvalues 37 2.2.2.iii Motivation 39 vi Contents vii 2.2.2.iv Powerconsiderations 40 2.2.3 Illustrations 40 2.2.3.i Ratioofgoldtosilverprices 41 2.2.3.ii Worldoilproduction 41 2.3 Monotonictransformationsandunitroottestsbased onranks 43 2.3.1 DFrank-basedtest 45 2.3.2 Rank-scoretest,BreitungandGouriéroux(1997) 47 2.3.2.i Seriallycorrelatederrors 49 2.3.2.ii Simulationresults 51 2.4 Therangeunitroottest 51 2.4.1 Therangeandnew‘records’ 52 2.4.1.i Theforwardrangeunitroottest 53 2.4.1.ii RobustnessofRF 54 UR 2.4.2 Theforward–backwardrangeunitroottest 55 2.4.3 RobustnessofRF andRFB 56 UR UR 2.4.4 Therangeunitroottestsfortrendingalternatives 59 2.5 Varianceratiotests 60 2.5.1 Abasicvarianceratiotest 61 2.5.2 Breitungvarianceratiotest 64 2.6 Comparisonandillustrationsofthetests 66 2.6.1 Comparisonofsizeandpower 67 2.6.2 Linearorexponentialrandomwalks? 69 2.6.3 Empiricalillustrations 70 2.6.3.i Ratioofgold–silverprice(revisited) 70 2.6.3.ii Airrevenuepassengermiles(US) 71 2.7 Concludingremarks 73 Questions 74 3 FractionalIntegration 76 Introduction 76 3.1 Afractionallyintegratedprocess 78 3.1.1 Aunitrootprocesswithfractionallyintegratednoise 78 3.1.2 Binomialexpansionof(1−L)d 79 3.1.2.i ARcoefficients 79 3.1.2.ii MAcoefficients 80 3.1.2.iii Thefractionallyintegratedmodelinterms oftheGammafunction 80 3.1.3 TwodefinitionsofanI(d)process,dfractional 82 3.1.3.i Partialsummation 82 3.1.3.ii Directdefinition 83 3.1.4 ThedifferencebetweentypeIandtypeIIprocesses 84 viii Contents 3.1.5 TypeIandtypeIIfBM 84 3.1.6 Deterministiccomponentsandstartingvalue(s) 86 3.1.6.i Deterministiccomponents 86 3.1.6.ii Startingvalue(s) 86 3.2 TheARFIMA(p,d,q)model 87 3.2.1 Autocovariancesandautocorrelationsofthe ARFIMA(0,d,0)process,d≤0.5 88 3.2.1.i Autocovariances 88 3.2.1.ii Autocorrelations 88 3.2.1.iii Inverseautocorrelations 89 3.2.2 GraphicalpropertiesofsomesimpleARFIMA models 89 3.3 Whatkindofmodelsgeneratefractionald? 93 3.3.1 Theerrordurationmodel(Parke,1999) 93 3.3.1.i Themodel 93 3.3.1.ii Motivation:thesurvivalrateoffirms 94 3.3.1.iii Autocovariancesandsurvivalprobabilities 94 3.3.1.iv Thesurvivalprobabilitiesinalong-memory process 96 3.3.1.v Thesurvivalprobabilitiesinashort-memory, AR(1),process 97 3.3.2 Anexample:thesurvivalrateforUSfirms 97 3.3.3 Errordurationandmicropulses 99 3.3.4 Aggregation 99 3.3.4.i Aggregationof‘micro’relationships 100 3.3.4.ii TheAR(1)coefficientsare‘draws’fromthe betadistribution 101 3.3.4.iii Qualifications 101 3.4 Dickey-Fullertestswhentheprocessisfractionally integrated 102 3.5 AfractionalDickey-Fuller(FDF)testforunitroots 105 3.5.1 FDFtestforfractionalintegration 106 3.5.2 AfeasibleFDFtest 107 3.5.3 Limitingnulldistributions 107 3.5.4 Seriallycorrelatederrors:anaugmentedFDF,AFDF 108 3.5.5 AnefficientFDFtest 110 3.5.6 EFDF:limitingnulldistribution 112 3.5.7 Seriallycorrelatederrors:anaugmentedEFDF,AEFDF 113 3.5.8 Limitingnulldistributionoftη(dˆT) 114 3.6 FDFandEFDFtests:deterministiccomponents 114 3.7 Locallybestinvariant(LBI)tests 118 3.7.1 AnLM-typetest 118 Contents ix 3.7.1.i Noshort-rundynamics 118 3.7.1.ii Deterministiccomponents 121 3.7.1.iii Short-rundynamics 122 3.7.2 LMtest:aregressionapproach 124 3.7.2.i Noshort-rundynamics 124 3.7.2.ii Short-rundynamics 125 3.7.2.iii Deterministicterms 126 3.7.3 AWaldtestbasedonMLestimation 126 3.8 Power 127 3.8.1 Poweragainstfixedalternatives 127 3.8.2 Poweragainstlocalalternatives 128 3.8.3 Theoptimal(power-maximising)choiceofd 1 intheFDFtest(s) 129 3.8.4 Illustrativesimulationresults 131 3.9 Example:USwheatproduction 135 3.10 Concludingremarks 141 Questions 142 Appendix3.1Factorialexpansionsforintegerandnon-integerd 149 A3.1Whatisthemeaningof(1−L)d forfractionald? 149 A3.2Applyingthebinomialexpansiontothefractionaldifference operator 150 A3.3TheMAcoefficientsintermsofthegammafunction 151 Appendix3.2FDFtest:assumingknownd 152 1 4 Semi-ParametricEstimationoftheLong-memoryParameter 154 Introduction 154 4.1 Linearfilters 156 4.1.1 Ageneralresult 156 4.1.2 ThespectraldensityofanARMAprocess 157 4.1.3 Examplesofspectraldensities 158 4.1.4 Thedifferencefilter 159 4.1.5 Processeswithfractionallong-memoryparameter 160 4.1.5.i ARFIMAprocesses 160 4.1.5.ii Fractionalnoise(FN)processes 161 4.2 Estimatingd 162 4.2.1 Priortransformationofthedata 162 4.2.2 ThediscreteFouriertransform,theperiodogramand thelog-periodogram‘regression’,poolingandtapering 163 4.2.2.i Reminders 163 4.2.2.ii Deterministiccomponents 163 4.3 Estimationmethods 164 4.3.1 Alog-periodogramestimator(GPH) 164

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.