ebook img

Topics in Interpolation Theory PDF

508 Pages·1997·37.941 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Topics in Interpolation Theory

Operator Theory Advances and Applications Vol. 95 Editor: I. Gohberg Editorial Office: T. Kailath (Stanford) School of Mathematical H.G. Kaper (Argonne) Sciences ST. Kuroda (Tokyo) Tel Aviv University P. Lancaster (Calgary) Ramat Aviv, Israel L.E. Lerer (Haifa) E. Meister (Darmstadt) Editorial Board: B. Mityagin (Columbus) J. Arazy (Haifa) V. V. Peller (Manhattan, Kansas) A. Atzmon (Tel Aviv) J. D. Pincus (Stony Brook) J. A. Ball (Blackburg) M. Rosenblum (Charlottesville) A. Ben-Artzi (Tel Aviv) J. Rovnyak (Charlottesville) H. Bercovici (Bloomington) D. E. Sarason (Berkeley) A. Böttcher (Chemnitz) H. Upmeier (Marburg) L. de Branges (West Lafayette) S. M. Verduyn-Lunel (Amsterdam) K. Clancey (Athens, USA) D. Voiculescu (Berkeley) L. A. Coburn (Buffalo) H. Widom (Santa Cruz) K. R. Davidson (Waterloo, Ontario) D. Xia (Nashville) R. G. Douglas (Stony Brook) D. Yafaev (Rennes) H. Dym (Rehovot) A. Dynin (Columbus) P. A. Fillmore (Halifax) Honorary and Advisory C. Foias (Bloomington) Editorial Board: P. A. Fuhrmann (Beer Sheva) P. R. Haimos (Santa Clara) S. Goldberg (College Park) T. Kato (Berkeley) B. Gramsch (Mainz) P. D. Lax (New York) G. Heinig (Chemnitz) M. S. Livsic (Beer Sheva) J. A. Helton (La Jolla) R. Phillips (Stanford) M.A. Kaashoek (Amsterdam) B. Sz.-Nagy (Szeged) Topics in Interpolation Theory Edited by H. Dym B. Fritzsche V. Katsnelson B. Kirstein Springer Basel AG Editors: H. Dym B. Fritzsche V. Katsnelson B. Kirstein Department of Theoretical Mathematics Mathematisches Institut The Weizmann Institute of Science Universität Leipzig Rehovot 76100 04109 Leipzig Israel Germany 1991 Mathematics Subject Classification 47A57, 30E05,42A82 Library of Congress Cataloging-in-Publication Data Topics in interpolation theory / edited by H. Dym ... [et al.]. p. cm. - (Operator theory, advances and applications : vol. 95) Includes bibliographical references (p. - ) and index. ISBN 978-3-0348-9838-6 ISBN 978-3-0348-8944-5 (eBook) DOI 10.1007/978-3-0348-8944-5 1. Interpolation. I. Dym, H. (Harry), 1938- . II. Series: Operator theory, advances and applications : v. 95. QA281.T66 1997 5ir.42-dc21 97-8157 CIP Deutsche Bibliothek Cataloging-in-Publication Data Topics in interpolation theory / ed. by H. Dym ... - Basel; Boston ; Berlin : Birkhäuser, 1997 (Operator theory ; Vol. 95) ISBN 978-3-0348-9838-6 NE: Dym, Harry [Hrsg.]; GT This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use permission of the copyright owner must be obtained. © 1997 Springer Basel AG Originally published by Birkhäuser Verlag, Basel, Switzerland in 1997 Softcover reprint of the hardcover 1st edition 1997 Printed on acid-free paper produced from chlorine-free pulp.«> Cover design: Heinz Hiltbrunner, Basel ISBN 978-3-0348-9838-6 98765432 1 Table of contents Welcoming remarks ...................................................... XIII Editorial introduction ................................................... XVII Vladimir Petrovich Potapov, as remembered by colleagues, friends and former students .............................................. 1 M.S. Livsic ......................................................... 1 D.Z. Arov ........................................................... 8 L.A. Sakhnovich .................................................... 12 A.A. Nudelman ..................................................... 13 V.K. Dubovoj ....................................................... 14 V.E. Katsnelson ..................................................... 16 N.J. Akhiezer On a minimum problem in function theory and the number of roots of an algebraic equation inside the unit disc ......................... 19 O. Introduction........................................................ 19 1. An auxiliary result .................................................. 20 2. The CaratModory-Fejer problem.................................... 23 3. A remark on Equation (14) .......................................... 28 4. An application to the problem on the number of roots of an algebraic equation in the disc .................................. 29 5. The G. Pick problem................................................ 31 References ........ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 D. Alpay and V. Bolotnikov On tangential interpolation in reproducing kernel Hilbert modules and applications ................................................. 37 1. Introduction........ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2. Reproducing kernel Hilbert modules ................................. 39 3. The left-sided Nevanlinna-Pick problem ............................. 43 4. The left-sided CaratModory-Fejer problem .......................... 46 5. Right-sided interpolationlj ........................................... 49 6. On the recursive solution and the solvability criterion ................ 52 7. The case of Hardy spaces............................................ 54 8. An example: interpolation in Hardy-Sobolev spaces .................. 54 VI Table of contents 9. Interpolation in Dirichlet spaces ..................................... 58 10. Interpolation in Bergman spaces .................................... .59 11. Some remarks on interpolation in de Branges-Rovnyak spaces........ 60 References ................................... "\' .'.................. 65 A. Dijksma and H. Langer Notes on a Nevanlinna-Pick interpolation problem for generalized N evanlinna functions ......................................... 69 1. Introduction........................................................ 69 2. The model.......................................................... 72 3. Selfadjoint extensions ofthe model and the solutions of the interpolation problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4. A parametrization .................................................. 79 5. Excluded parameters ................................................ 84 References 89 V.K. Dubovoj The indefinite metric in the Schur interpolation problem for analytic functions, IV ................................................. 93 10. Solving the degenerate Schur problem ............................... 93 References .......................................................... 103 H. Dym and B. Preydin Bitangential interpolation for upper triangular operators 105 1. Introduction ....................................................... . 105 2. The basic interpolation problem .................................... . 110 3. The augmented BIP ................................................ . 115 4. Coupling ........................................................... . 125 5. Linear fractional representation of all solutions ..................... . 132 6. Formulas for the standard unitary colligation A ..................... . 137 References ......................................................... . 141 H. Dym and B. Preydin Bitangential interpolation for upper triangular operators when the Pick operator is strictly positive ...................................... 143 7. Strictly positive Pick operators ............... , ....... ,.............. 143 8. Chain scattering operators .......................................... 150 9. The maximum entropy problem..................................... 157 10. Positive real interpolants ............................................ 159 References .......................................................... 163 Table of contents VII Yu.M. Dyukarev Integral representations of a pair of nonnegative operators and interpolation problems in the Stieltjes class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 165 1. Introduction ....................................................... . 165 2. The formulation of the problem about consistent representation of the pair of nonnegative operators ................................ . 166 3. The system of fundamental matrix inequalities of V.P. Potapov ..... . 168 4. The transformation of the FMI of V.P. Potapov .................... . 171 5. J-expansive functions associated with a nondegenerate system of FMI's .................................................... . 177 6. The solution of the FMI system in the nondegenerate case .......... . 181 References 183 Yu.P. Ginzburg On recovering a multiplicative integral from its modulus 185 O. Preface ............................................................. 185 1. On one factorization of an absolutely continuous operator function ................................................... 186 2. The modulus of the multiplicative integral of a lIerrrlitian-valued function .......................................... 187 3. On some classes of analytic operator functions and their multiplicative representations ....................................... 188 References .......................................................... 193 L. Golinskii On Schur functions and Szego orthogonal polynomials 195 References .......................................................... 203 L. Golinskii and 1. Mikhailova Hilbert spaces of entire functions as a J theory subject 205 O. Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 205 1. Preliminaries from J theory ......................................... 206 2. de Branges matrices ................................................. 212 3. Parametrization of de Branges matrices ............................. 220 4. de Branges spaces ................................................... 226 5. Structure of perfect de Branges matrices and basic formulas ......... 229 6. Parseval's equality .................................................. 235 References .......................................................... 251 VIII Table of contents V.E. Katsnelson On transformations of Potapov's fundamental matrix inequality ........... 253 O. Preface... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 1. 'The FMI and its structure .......................................... 254 2. The FMI for the Nevan1inna~Pick problem ....................... ;... 256 3. Derivation of the FMI (NP) ........................................ 257 4. The Hamburger moment problem as a classical interpolation problem ............................................... 260 5. Derivation of the FMI (1i) ........................... ;.............. 263 6. Transformation of the FMI (1t) ..................................... 265 7. On using the TFMI (1t) to obtain interpolation information from the FMI (1i) ................................................... 269 8. Transformation of the FMI (NP) ....................... ;........... 274 References .......................................................... 280 V.E. Katsnelson, A. Ya~ Kheifets and P.M. Yuditskii An abstract interpolation problem and the extension theory of isometric operators .................................................... 283 1. Interpolation data and examples ..................................... 283 2. V.P. Potapov's fundamental matrix inequality and its transformation .............................................. 285 3. The abstract interpolation problem .................................. 295 References .......................................................... 297 V.E. Katsnelson and B. Kirstein On the theory of matrix-valued functions belonging to the Smirnov class ...................................................... 299 O. Preface............................................................. 300 1. On the matricial NevanIinna and Smirnov classes.................... 302 2. Matrix functions of the Smirnov class as multiples of contractive matrix functions ......................................... 307 3. Outer matrix-valued functions....................................... 310 4. Matrix-valued inner functions....................................... 319 5. Inner-outer factorization ............................................ 323 6. An analogue of Frostman's theorem for matrix functions of the Smirnov class ................................................. 330 References .......................................................... 341 Table of contents IX I. V. Kovalishina Integral representation of function of class Ka 351 1. Formulation of the problem......................................... 351 2. The fundamental matrix inequality (FMI) .................. ,........ 353 3. The unification of the FMI and the Sakhnovich identity .............. 355 4. The case of more than one representation ............................ 356 References .......................................................... 359 M.G. Krein On the theory of entire matrix-functions of exponential type.............. 361 O. Introduction........................................................ 361 1. Proof of the main theorem .......................................... 362 2. Applications of the theorem for the investigation of a monodromy matrix ............................................. 364 3. On a special case of the system (2.1) ................................ 368 References .......................................................... 371 S. Kupin and P. Yuditskii Analogs of Nehari and Sarason theorems for character-automorphic functions and some related questions ............................................... 373 O. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373 1. Groups of Widom-Carleson type and Hardy spaces of character-automorphic functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 374 2. Character-automorphic analogs of the Nehari and Sarason Theorems .............................................. 378 3. A solvability criterion for the character-automorphic Nevanlinna-Pick problem and the uniqueness of solution............. 381 4. A solvability criterion for the Nevanlinna-Pick problem in the plane with a homogeneous compact removed ..................... 385 References 390 M.S. Livsic The Blaschke-Potapov factorization theorem and the theory of nonselfadjoint operators ............................................... 391 O. Preface.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 391 1. Characteristic functions ............................................. 392 2. Potapov's factorization theorem ..................................... 395 References .......................................................... 396 x Table of contents 1. V. Mikhailova Weyl matrix circles as a tool for uniqueness in the theory of multiplicative representation of J-inner functions ....................... 397 References .......................................................... 416 1. V. Mikhailova and V.P. Potapov On a criterion of positive definiteness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 419 O. Introduction........................................................ 419 1. The triad ........................................................... 421 2. The value .6.(~) ..................................................... 423 3. The fundamental antilinear forms B~(f), L~(f), C~(f) ................ 427 4. The matrix function W(z,~) and the related canonical system 431 5. The relationship between the matrix function W(z,~) and the original problem ............................................ 437 6. The formulation of the Main Theorem............................... 446 7. The discussion of the Main Theorem ................................ 447 8. An example ......................................................... 449 References .......................................................... 450 E. Russakovskii Matrix boundary value problems with eigenvalue dependent boundary conditions (The linear case) .................................... 453 O. Introduction ........... '. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453 1. Notation and remarks............................................... 454 2. The operator T in the space .c~(0, 1) ................................ 455 3. The generalized Lagrange identity for the operator T ................ 456 4. The appropriate indefinite scalar product in the Pontryagin space £~(0,1) ............................................ 457 5. Properties of the operator T ........................................ 457 6. Comparison with earlier results ...................................... 458 References .......................................................... 460

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.