ebook img

Theory of Transformation Groups I: General Properties of Continuous Transformation Groups. A Contemporary Approach and Translation PDF

640 Pages·2015·5.13 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Theory of Transformation Groups I: General Properties of Continuous Transformation Groups. A Contemporary Approach and Translation

Sophus Lie Theory of Transformation Groups I General Properties of Continuous Transformation Groups. A Contemporary Approach and Translation Editor and Translator: Joël Merker Theory of Transformation Groups I Sophus Lie Theory of Transformation Groups I General Properties of Continuous Transformation Groups. A Contemporary Approach and Translation With the collaboration of Friedrich Engel ë Editor and Translator: Jo l Merker 123 Author Editor andTranslator SophusLie(1842–1899) JoëlMerker Laboratoire de Mathématiques, Facultédes Collaborator Sciencesd’Orsay Friedrich Engel(1861–1941) UniversitéParis-Sud11 Orsay France First edition published in German language by B.G. Teubner, Leipzig, with the title: Theorie derTransformationsgruppen in 1888,1930 ISBN 978-3-662-46210-2 ISBN 978-3-662-46211-9 (eBook) DOI 10.1007/978-3-662-46211-9 LibraryofCongressControlNumber:2015931246 Mathematics Subject Classification: 22E05, 22E10, 22E60, 22-03, 01A05, 01A55, 17B30, 17B40, 17B45,17B56,17B66,17B70,22F30,12H05,14P05,14P15 SpringerHeidelbergNewYorkDordrechtLondon ©Springer-VerlagBerlinHeidelberg1888,1930,2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthis book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade. Coverpicturetakenfrom“NyillustreretTidende”,1886 Printedonacid-freepaper Springer-VerlagGmbHBerlinHeidelbergispartofSpringerScience+BusinessMedia (www.springer.com) THEORIE DER TRANSFORMATIONSGRUPPEN —————- ERSTERABSCHNITT —————- UNTERMITWIRKUNGVONProf.Dr.FRIEDRICHENGEL BEARBEITET VON SOPHUS LIE, WEIL.PROFESSORDERGEOMETRIEANDDERUNIVERSITÄTLEIPZIG UNDPROFESSORITRANSFORMASJONSGRUPPENESTEORIANDER KÖNIGLICHENFREDERIKSUNIVERSITÄTZUOSLO UNVERÄNDERTER NEUDRUCK MIT UNTERSTÜTZUNG DER KÖNIGLICHEN FREDERIKS UNIVERSITÄT ZU OSLO 1930 VERLAGUNDDRUCKVONB.G.TEUBNERINLEIPZIG UNDBERLIN Foreword This modernized English translation grew out of my old simultaneous interest in the mathematics itself and in the metaphysical thoughts governing its continued development.IowetothebooksofRobertHermann,PeterOlver,ThomasHawkins, andOlleStormarkmyintroductiontoLie’soriginalvastfield. Uptotheendofthe18th Century,theuniversallanguageofSciencewasLatin, until its centre of gravity shifted to German during the 19th Century, while nowa- days—needless to say—English is widespread. Being intuitively convinced that Lie’soriginalworkscontainmuchmorethanwhathasbeenmodernizeduptonow, threeyearsagoIstartedtolearnGermanfromscratchjustinordertoreadLie,with twomaingoalsinmind: (cid:2) to complete and modernize the Lie-Amaldi classification of finite- dimensionallocalLiegroupholomorphicactionsonspacesofcomplexdimensions 1,2and3forvariousapplicationsincomplexandCauchy-Riemanngeometry; (cid:2) tobetterunderstandtherootsofÉlieCartan’sachievements. Then it gradually appeared to me that Lie’s mathematical thought is universal and transhistorical, hence it deserves per se to be translated. The present adapted English translation follows an earlier monograph1 written in French and specially devotedtoEngelandLie’streatmentoftheso-calledRiemann-Helmholtzproblem inVolumeIIIoftheTheoriederTransformationsgruppen. A few observations are in order concerning the chosen format. For several rea- sons,itwasessentiallyimpossibletodirectlytranslatethefirstfewchaptersinwhich Lie’sintentionwastosetupthebeginningsofthetheoryinthehighestpossiblegen- erality, especially in order to eliminate the axiom of inverse, an aspect never dealt withinmoderntreatises.Asaresult,Idecidedinthefirstfourchapterstoreorganize thematerialandtoreprovetherelevantstatements,neverthelessretainingallofthe embraced mathematical content. But starting with Chap. 5, Engel and Lie’s expo- sitionissosmooth,sorigorous,sounderstandable,sosystematic,soastonishingly wellorganized—sobeautifulforthought—thatapuretranslationisessential. 1 Merker,J.:SophusLie,FriedrichEngeletleproblèmedeRiemann-Helmholtz,HermannÉditeur desSciencesetdesArts,Paris,xxiii+325pp,2010. vii viii Foreword Lastly,theauthorisgratefultoGautamBharali,PhilipBoalch,EgmontPorten, andMasoudSabzevari forafewfinesuggestions concerning thelanguage andfor misprint chasing, but is of course solely responsible for the lack of idiomatic En- glish. Paris,ÉcoleNormaleSupérieure, JoëlMerker 16March2010 Contents PartI ModernPresentation 1 ThreePrinciplesofThought GoverningtheTheoryofLie .................................... 3 References..................................................... 12 2 LocalTransformationEquations andEssentialParameters ....................................... 13 2.1 GenericRankoftheInfiniteCoefficientMapping................ 13 2.2 QuantitativeCriterion fortheNumberofSuperfluousParameters...................... 15 2.3 TheAxiomofInverseandEngel’sCounterexample.............. 19 References..................................................... 22 3 FundamentalDifferentialEquations forFiniteContinuousTransformationGroups..................... 23 3.1 TheConceptofaLocalTransformationGroup.................. 24 3.1.1 TransformationGroupAxioms......................... 24 3.1.2 SomeConventions ................................... 26 3.2 ChangesofCoordinatesandofParameters ..................... 27 3.3 GeometricIntroductionofInfinitesimalTransformations.......... 31 3.4 DerivationofFundamentalPartialDifferentialEquations ......... 33 3.4.1 RestrictingConsiderationstoaSingleSystemofParameters 34 3.4.2 ComparingDifferentFrames ofInfinitesimalTransformations........................ 35 3.5 EssentializingtheGroupParameters........................... 36 3.6 TheFirstFundamentalTheorem .............................. 40 3.7 FundamentalDifferentialEquations fortheInverseTransformations .............................. 42 3.8 TransferofIndividualInfinitesimalTransformations bytheGroup .............................................. 44 ix x Contents 3.8.1 ASynthetic,GeometricCounterpartoftheComputations... 46 3.8.2 TransferofGeneralInfinitesimalTransformations......... 47 3.8.3 TowardstheAdjointAction ........................... 48 3.9 SubstitutingtheAxiomofInverse foraDifferentialEquationsAssumption ....................... 50 3.9.1 SpecifyingDomainsofExistence....................... 51 3.9.2 The Group Composition Axiom and Fundamental DifferentialEquations ................................ 54 3.9.3 TheDifferentialEquationsAssumption anditsConsequences................................. 57 3.9.4 TowardsTheorem26 ................................. 58 3.9.5 MetaphysicalLinkswithSubstitutionTheory............. 59 References..................................................... 60 4 One-TermGroups andOrdinaryDifferentialEquations ............................. 61 4.1 MechanicalandMentalImages............................... 62 4.2 StraighteningofFlowsandtheExponentialFormula ............. 64 4.2.1 TheExponentialAnalyticFlowFormula................. 66 4.2.2 ActiononFunctions.................................. 67 4.3 ExponentialChangeofCoordinatesandtheLieBracket .......... 70 4.3.1 FlowsasChangesofCoordinates....................... 72 4.4 EssentialityofMultipleFlowParameters....................... 73 4.5 Generationofanr-TermGroupbyitsOne-TermSubgroups....... 80 4.6 ApplicationstotheEconomyofAxioms ....................... 82 References..................................................... 91 PartII EnglishTranslation 5 CompleteSystemsofPartialDifferentialEquations ................ 95 § 21. ....................................................... 97 § 22. ....................................................... 98 § 23. .......................................................102 § 24. .......................................................104 § 25. .......................................................106 § 26. .......................................................109 6 NewInterpretationoftheSolutionsofaCompleteSystem ..........111 § 27. .......................................................111 § 28. .......................................................114 § 29. .......................................................120 7 DeterminationofAllSystemsofEquations WhichAdmitGivenInfinitesimalTransformations ................123 § 30. .......................................................123 § 31. .......................................................130 Contents xi § 32. .......................................................133 § 33. .......................................................136 § 34. .......................................................138 § 35. .......................................................143 § 36. .......................................................147 8 CompleteSystemsWhichAdmit AllTransformations ofaOne-termGroup ...........................................151 § 37. .......................................................152 § 38. .......................................................157 9 CharacteristicRelationships BetweentheInfinitesimalTransformationsofaGroup .............161 § 39. .......................................................161 § 40. .......................................................166 § 41. .......................................................170 § 42. .......................................................173 § 43. .......................................................174 § 44. .......................................................178 § 45. .......................................................180 § 46. .......................................................184 10 SystemsofPartialDifferentialEquations theGeneralSolutionofWhich DependsOnlyUponaFiniteNumber ofArbitraryConstants .........................................187 § 47. .......................................................188 § 48. .......................................................195 11 TheDefiningEquations fortheInfinitesimalTransformationsofaGroup ..................199 § 49. .......................................................199 § 50. .......................................................201 § 51. .......................................................203 § 52. .......................................................208 § 53. .......................................................211 12 DeterminationofAllSubgroupsofanr-termGroup ...............217 § 54. .......................................................217 § 55. .......................................................219 § 56. .......................................................221 § 57. .......................................................222

Description:
This modern translation of Sophus Lie's and Friedrich Engel's “Theorie der Transformationsgruppen I” will allow readers to discover the striking conceptual clarity and remarkably systematic organizational thought of the original German text. Volume I presents a comprehensive introduction to the
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.