ebook img

The orbital elements and physical properties of the eclipsing binary BD+36 3317, a probable member of $\delta$ Lyr cluster PDF

0.46 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The orbital elements and physical properties of the eclipsing binary BD+36 3317, a probable member of $\delta$ Lyr cluster

Astronomy&Astrophysicsmanuscriptno.evrim (cid:13)cESO2016 January27,2016 The orbital elements and physical properties of the eclipsing ◦ δ binary BD+36 3317, a probable member of Lyr cluster E.Kıran1,2,P.Harmanec1,Ö.L.Deg˘irmenci2,M.Wolf1,J.Nemravová1,M.Šlechta3,andP.Koubský3 1 AstronomicalInstituteoftheCharlesUniversity,FacultyofMathematicsandPhysics, VHolešovicˇkách2,CZ-18000Praha8-Troja,CzechRepublic 2 UniversityofEge,DepartmentofAstronomy&SpaceSciences,35100Bornova-˙Izmir,Turkey 3 AstronomicalInstitute,AcademyofSciencesoftheCzechRepublic,25165Ondˇrejov,CzechRepublic 6 1 ReceivedJanuary27,2016 0 2 ABSTRACT n a Context.Thefactthateclipsingbinariesbelongtoastellargroupisuseful,becausetheformercanbeusedtoestimatedistanceand J additionalpropertiesofthelatter,andviceversa. 6 Aims. Our goal is to analyse new spectroscopic observations of BD+36◦3317 along with the photometric observations from the 2 literatureand,forthefirsttime,toderiveallbasicphysicalpropertiesofthisbinary. Weaimtofindoutwhetherthebinaryisindeed amemberoftheδLyropencluster. ] Methods.ThespectrawerereducedusingtheIRAFprogramandtheradialvelocitiesweremeasuredwiththeprogramSPEFO.The A linespectraofbothcomponentsweredisentangledwiththeprogramKOREL andcomparedtoagridofsyntheticspectra. Thefinal G combinedradial-velocityandphotometricsolutionwasobtainedwiththeprogramPHOEBE. . Results.WeobtainedthefollowingphysicalelementsofBD+36◦3317: M1=2.24±0.07M⊙,M2=1.52±0.03M⊙,R1=1.76±0.01 h R ,R =1.46±0.01R ,logL =1.52±0.08L ,logL =0.81±0.07L .WederivedtheeffectivetemperaturesT =10450±420 ⊙ 2 ⊙ 1 ⊙ 2 ⊙ eff,1 p K,T =7623±328K.BothcomponentsarelocatedclosetoZAMSintheHertzsprung-Russell(HR)diagramandtheirmasses eff,2 - o andradiiareconsistentwiththepredictionsofstellarevolutionarymodels. Ourresultsimplytheaveragedistancetothesystemd= r 330±29pc.Were-investigatedthemembershipofBD+36◦3317intheδLyrclusterandconfirmedit.ThedistancetoBD+36◦3317, t givenabove,thereforerepresentsanaccurateestimateofthetruedistanceforδLyrcluster. s a Conclusions.TherealityoftheδLyrclusterandtheclustermembershipofBD+36◦3317havebeenreinforced. [ Keywords. Stars:binaries:eclipsingStars:fundamentalparametersStars:individual:BD+36◦3317 1 v 61. Introduction including δ Lyr cluster, belong to the Pleiades moving group. 8 For BD+36◦3317 he gave V = 8m.65, (B−V) = −0m.03, and 9 0 0 Eclipsingbinarieshaveplayedanimportantroleinastrophysics (U−B) = −0m.115 and a spectral class B9.5V. Later, Eggen 6 0 andinunderstandingthenatureandevolutionofbinarysystems (1983)obtaineduvbyphotometryofstarsfromtheδLyrcluster 0 by providing the most accurate values of stellar masses, radii, andmentionedthatBD+36◦3317isaspectroscopicbinarywith . 1andluminosities.Especiallyusefulareeclipsingbinaries,which aradialvelocity(RV)rangefrom−90to+17kms−1. Hegives 0are members of some kind of cluster or association since they V =8m.79,(b−y)=0m.031,m =0m.150,andc =0m.885forthe 6 1 1 provide an excellent tool for accurately estimating the cluster system. Thesecanbecomparedtoindependentuvbyphotomet- 1 distanceandage,independentlyofphotometriccalibrations. ric results published by Anthony-Twarog(1984) as V = 8m.90, : v The eclipsing binary BD+36◦3317 (GSC 2651 802, SAO (b − y) = 0m.011, m1 = 0m.160, and c1 = 0m.904. She ob- Xi67556, α2000 = 18h54m22s, δ2000 = 36◦51′.07′.′445, V = 8m.77) tained a large scatter in the distance moduliof individualclus- islocatedin thefield ofδLyrcluster. Stephenson(1959), who ter members and again cast some doubt as to the existence of r aactually discovered the δ Lyr (Stephenson 1) cluster, gives a the cluster. She confirmed, however, that the observed colours visual magnitude 8m.8 and spectral type A0 for BD+36◦3317. of BD+36◦3317 are indicative of an A-type spectroscopic bi- nary. Interestingly, neither author noted that the range of pub- Bronkalla(1963)obtainedphotoelectricUBV andphotographic observations of many stars in the vicinity of δ Lyr and chal- lished valuesforthe V magnitudeof BD+36◦3317suggestsits lenged the existence of the cluster. For BD+36◦3317 he ob- light variability. However, in 2008, Violat-Bordonau (2008) tained V = 8m.800, (B−V) = +0m.041, and (U−B) = −0m.036. publish their 2007 V band observations of the system and an- nouncethatBD+36◦3317isaneclipsingbinarywithaperiodof However, Eggen (1968) made photoelectric(UBV) photometry of77starsinthevicinityoftheδLyrclusterandpresentedsome 4d.30216. Theyalsogivethe epochoftheprimaryminimumas HJD 2454437.25921. Özdarcanetal. (2012) obtained a set of convincingevidencethattheclusterexists. Hederivedthemean reddeningE(B−V) = 0m.05andadistancemodulusof7m.5. He completeUBV lightcurvesandimprovedtheephemeristo arguedthattheδLyrclusterhasasimilarcolourmagnitudeand propermotiontothePleiadesmovinggroup. ForBD+36◦3317 T =HJD2454437.2466(30)+4d.302162(27)×E. (1) min.I he obtainedV = 8m.80, (B−V) = +0m.02, and(U−B)= −0m.08. Eggen (1972) further developed the idea that several clusters, Theyderiveda simultaneoussolution of the lightcurves(LCs) Articlenumber,page1of10 andnoticedthatthe system hasa totaleclipse in thesecondary Table 2. Orbital parameters and their uncertainties obtained with the programSPEL. minimum. Asaresult,theyderivedthemagnitudesandcolours of the components separately. They give the intrinsic visual magnitudes and colours of the components as V = 8m.883, Element Value 0 (U−B) = −0m.170, (B−V) = −0m.062 for the primary, and 0 0 P(d) 4.30216fixed V = 10m.277, (U−B) = −0m.104, (B−V) = 0m.245 for the 0 0 0 T (HJD) 2454437.2359±0.0046 secondary. Theyestimatetheinterstellarreddeningandtotalvi- min.I sual extinctionfor the system as E(B−V) = 0m.07, A = 0m.22. K1 (kms−1) 82.6±0.6 0 K (kms−1) 123.1±0.7 FromtheirLCanalysis,theyestimatetheabsolutephysicalpa- 2 q= K /K 0.67±0.01 rametersofthecomponentsandarriveatadistanceof353pcfor 1 2 thebinary. Theydonotgiveanerrorbarforthedistanceofthe V0(kms−1) −19.0±0.4 system. asini(R⊙) 17.5 2. Observationsanddatareductions semi-amplitudesoftheradialvelocitycurvesofthecomponents, Spectroscopic observations of BD+36◦3317 were made with andthesystemicvelocityofthebinaryinthiscase). Wekeptthe the single order spectrograph attached to the 2 m reflector of orbital period from ephemeris (1) fixed and adopted a circular the Ondˇrejov Observatory, Czech Republic. The spectra were orbit. There seems to be some weak evidence of a very small recordedwith aCCD detector and cover the wavelength range eccentricityoftheorbitbutonlycontinuingobservationsofthe of6260−6700Åwithatwo-pixelspectralresolutionof11700. timesofminimacould(dis)proveit. Inanycase,theuseofthe Thetypicalexposuretimeswere90min,andtheratioofsignal circularorbithasanegligibleeffectonthe elementsthatdefine tonoise(S/N)variesbetween80and200. Thesystem wasob- thebinarymasses. TheresultscanbefoundinTable2. servedover20nightsfromMarchtoJuly2014. Eachnight,flat fieldandbiasexposureswereobtainedandtheThorium-Argon 3.3.Improvedlinearephemeris (ThAr)comparisonspectrawereobtainedbeforeandaftereach stellar exposure. The initial reductions (bias subtraction, flat HavingnowtwosetsofphotometricobservationsandnewRVs, fielding, cosmicrayremoval,andwavelengthcalibration)were whichspan a substantiallylongertime intervalthanbefore, we carriedoutwiththe programIRAF byMŠ. Rectificationofthe decided to derive a new, more accurate linear ephemeris. To spectraandtheRVmeasurementsofthestellarandselectedtel- thisend,wefirstusedtheprogramPHOEBE 1.0(Prša&Zwitter luriclineswerecarriedoutwiththeprogramSPEFO,whichhas 2005, 2006), which is an extension of the widely used WD written by Dr. J.Horn (Hornetal. 1996) and further developed program (Wilson&Devinney 1971). As mentioned above, byŠkoda(1996)andMr. J.Krpata. Violat-Bordonau (2008) obtained the first V-band light curve of the BD+36◦3317 and derived a linear ephemeris. Later, Özdarcanetal. (2012) published a new ephemeris based on 3. Towardsbasicphysicalpropertiesofthebinary their UBV light curves. We combined all four LCs with our 3.1.DirectRVmeasurements SPEFO RVstoobtainthefollowinglinearephemeris: As already mentioned, the object had been classified as an A- type star. This is corroborated by our red spectra, which con- Tmin.I =HJD2454437.2480(13)+4d.302152(1)×E. (2) tain the Hα line with a sharp core and very broad wings, Siii doubletat6347and6371Å, andseveralweakermetalliclines, mainlyofFei,Feii,Cai,Nii,andMgii. FordirectRVmeasure- ments, we used the three strongest lines (Hα core and the Siii doublet), where both binary components were easily resolved. 3.4.Spectradisentanglingandanothertrialsolution The measurements were carried out with the SPEFO program, TochecktheresultsfromthedirectRVmeasurementsinSPEFO, inwhichonecanslideanimageoftheflippedlineprofilewith andto obtainline spectra of individualbinarycomponentsthat respecttothedirectoneontothecomputerscreenuntilaperfect were suitable for further analyses, we decided to disentangle match of the desired parts of the profile is achieved (see, e.g. the spectra. For this we used the program KOREL, written Harmanecetal.2015;Hornetal.1996,fordetails). Allspectra and further developed by Hadrava (1995, 1997, 2004, 2009), were independentlyreducedand measuredby EK andPH and, and Škoda&Hadrava (2010), with the latest version available afterverifyingthatbothsetsoftheseindependentmeasurements throughthe VO-KORELweb service. Beforepreparingthein- agreewellwitheachother,meanvaluesforeachspectrumwere putdata for KOREL, we estimated the S/N of individualspectra adopted,asrecordedinTable1. in the line-free region 6625 – 6645 Å as the ratio of the mean signalanditsrmserrorusingtheformula 3.2.AtrialRVsolutionwiththeprogramSPEL To have some guidance for a more sophisticated analysis, we S S2−( S)2/m firstderivedtheorbitalsolutionwiththeprogramSPEL,written S/N =Pm /r(cid:0)P m−P1 (cid:1), (3) bthyetohrebliatateleDler.mJe.nHtso(ronr.b1itTahlepeprrioogdraamndreepqoucirhesofinmpuaxtivmaluumesRfVor,   wheremisthenumberofpixelsusedinthewavelengthinterval. 1 The program has never been published but was We then weightedeachspectrumbythe weightproportionalto carefully tested and used in several publications. (S/N)2 andnormalizedtothemeanS/Nofallspectrathatwere http://astro.troja.mff.cuni.cz/ftp/hec/SPEL90/spel.pdf used. Therebinningoftheelectronicspectraandpreparationof Articlenumber,page2of10 Kıranetal.:BasicphysicalelementsofBD+36◦3317 Table3.BesttrialorbitalsolutionwithKOREL (seethetextforthees- 103500 timationprocedureoftheerrorbars). 103000 102500 Element Value s al u sid 102000 P(d) 4.302152fixed e of r 101500 Tmin.I(HJD) 2454437.26469 uares 101000 KK1 ((kkmmss−−11)) 18204.8.1±±11.1.3 q 2 s of 100500 q 0.650±0.015 m su 100000 asini(R⊙) 17.4 99500 99000 SPEL solution in Table 2 as being quite representative of real 65 70 75 80 85 90 95 uncertainties.Secondly,wecanalsoestimateuncertaintiesofK K1 (km/s) 1 and K from the RV measurementsgivenin Table 1. Accord- 104000 2 ingto the valuesin Table 1, ourRV measurementshave mean 103500 errorsof0.63and1.1kms−1fortheprimaryandsecondarycom- 103000 ponents,respectively. Thesevaluesare alsoin goodagreement uals 102500 with the K errorsin Table 2. Thirdly,a close inspectionof the of resid 102000 rσaqth=e0r.fl0a2tfmorinKim1aanidnqF,igre.s1pesuctgigveelsyts.Terhreorresfoofreσ,Kfi1n=a2llyk,mwse−a1daonpdt es 101500 theaverageerrorsofσ =1.1kms−1,σ =1.3kms−1,andσ = ar K1 K2 q squ 101000 0.015forK1,K2andq,respectively. of m 100500 u s 100000 3.5.Acomparisonofdisentangledandobservedspectra withsyntheticones 99500 99000 To obtain the estimates of the effective temperatures, grav- 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 ity accelerations, and projectedrotationalvelocitiesfromspec- q troscopy,weusedtwoindependentprocedures. Fig. 1. Sum of squares of residuals for trial KOREL solutions with First we used a program which compares synthetic spectra fixedelementsasafunctionof(a)thesemi-amplitudeK (upperpanel), 1 withdisentangledorobservedspectraofmultiplesystemstoes- and(b)themassratioK /K (lowerpanel). 1 2 timate radiativepropertiesof its components(see Nasserietal. 2014, for the details). The programuses severalpre-calculated inputdataforKOREL wascarriedoutwiththeprogramHEC35D gridsof synthetic spectra. The primaryfalls within parameters writtenbyPH.2 covered with grid POLLUX (Palaciosetal. 2010) and the sec- ondaryfallswithingridAMBRE (deLavernyetal. 2012). The Using the ephemeris (2) and the orbitalparametersderived withSPEL,werunanumberoftests. First, wavelength band ∆λ ∈ {6330−6695}Å was fitted. The opti- we kept all elements fixed and ran the program for several mized parameterswere the effective temperature, the projected differentvaluesofthesemi-amplitudeK tofindoutwhichone rotationalvelocity,thesystemicradialvelocity,andtherelative 1 givesthelowestsumofsquaresoftheresiduals. Thisindicated luminosity3ofbothcomponents. TheresultispresentedinCol- K ∼ 81 km s−1 as the optimal value (see the upper panel of umn2ofTable4. 1 Fig.1). Keepingthisvaluefixed,wecarriedoutasimilarmap- Uncertainties of fitted parameters were estimated with a pingtoobtainthebestguessforthemassratioq = K /K . The Monte Carlo simulation, which was carried out as follows: 1) 1 2 resultisshowninthebottompanelofFig.1(q∼0.66). The continuum σc noise was estimated for each disentangled Starting with these values, we then carried out a series of spectrum,usingthesame procedureastheprevioussection. 2) KOREL solutions,butnowallowingthefreeconvergenceofthe AnartificialGaussiannoisewithσ=σcwasaddedtothedisen- epochT ,semi-amplitudeK , andthemassratioq = K /K tangledprofile. 3)The adjusteddisentangledspectrumwas fit- min.I 1 1 2 and variously kicking away the initial values from the adopted ted. Thisprocedurewasrepeated500timesandtheerrorswere values. The solution that gives the lowest sum of squares of estimated from the distribution of results from all runs. These residualsareshowninTable 3,andthecorrespondingdisentan- uncertaintiesdonotreflectthe needforthe re-normalizationof gled spectra of the components are shown in Fig. 2. We note disentangled profiles. This step especially affects the width of thatthe SPEL solutionbased on RVs measuredin SPEFO does Hαlineand,consequently,theobtainedparameters,particularly notdiffersignificantlyfromtheoptimalKOREL solution. the gravitational acceleration and the projected velocity. The TheKOREL programdoesnotprovideerrorestimatesofin- gravitationalaccelerationwasestimatedfromthelightcurveso- lutionandfixedduringthefittingofdisentangledspectra,butthe dividual parameters. However, certain error estimates can be projectedrotationalvelocitywasfitted. obtained as follows. First, since there is a good agreementbe- tween the results fromRVs directlymeasuredwith SPEFO and To test the reliability of the estimated projected rotational those from KOREL, one can adopt the K and q errors from the velocity, another fit that followed the same procedure was computed, but the fitted wavelength range was only ∆λ ∈ 2 The program and a manual to it can be downloaded from http://astro.troja.mff.cuni.cz/ftp/hec/HEC35. 3 Thetotalluminositywasconstrainedasfollows: L +L =1.0. 1 2 Articlenumber,page3of10 1.1 1.05 1.0 1.00 0.9 x x d flu 0.8 d flu 0.95 e e z z ali ali m 0.7 m or or 0.90 n n 0.6 0.85 0.5 0.4 0.80 6300 6350 6400 6450 6500 6550 6600 6650 6700 6750 6300 6350 6400 6450 6500 6550 6600 6650 6700 6750 l (Å) l (Å) Fig.2. Disentangledspectraofprimary(leftpanel)andsecondary(rightpanel)componentsobtainedwithKOREL. {6342−6350;6368−6374}Å.Thisregioncontainsapairofsil- Table4.PropertiesofthebinarycomponentsofBD+36◦3317estimated icon lines Siii6347Å and Siii6371Å, which should be unaf- fromthecomparisonofthedisentangled(Column2)andobserved(Col- umn3)spectrawithsyntheticones(seethetextfordetails). fected by the re-normalization uncertainty. The optimal rota- tionalvelocitiesarev sini=32.55±0.59kms−1,andv sini= 1 2 22.1±1.2km s−1. This shows that the true uncertainty of the Elements Disentangled Observed rotationalvelocityofsecondaryis∼10kms−1. T (K) 10500±340 10400±420 eff,1 Asanindependentapproachtodeterminetheeffectivetem- T (K) 7180±850 7600±880 eff,2 peraturesofthecomponentsweusedtheprogramCOMPO2writ- logg [cgs] 4.291 4.31±0.07 1 tenbyFrascaetal.(2006),whichcombinestworeferencespec- logg [cgs] 4.291 4.29±0.04 2 tra for both components for given effective temperatures, ra- L /L 0.74±0.012 0.80±0.022 1 tot dial velocities (or systematic velocity), projected rotationalve- L /L 0.26±0.012 0.20±0.022 2 tot locities, and gravitational accelerations and compare the com- v sini(kms−1) 29.1±1.1 – bined spectrum to the observed spectrum of a binary sys- 1 v sini(kms−1) 30.7±4 – tem. To achieve this, we used the reference spectra taken 2 γ (kms−1) −18.1±0.2 – from Valdesetal. (2004) and tried to reproduce our observed 1 γ (kms−1) −17.5±0.6 – spectrum taken at maximum orbital elongations (0.75 phase). 2 COMPO2 tries to minimize the residuals between observed and compositespectratofindoptimalparametervaluesforeffective Notes.1Thegravitationalaccelerationwasfixedavalueobtainedfrom temperatureandfractionalfluxcontributions.Theresultsofthis thelightcurvesolution.2Thesevaluesrepresenttheluminosityratiofor procedureare listed in Column3 of Table 4. As seen fromthe thestudiedspectralregion. table,bothmethodsestimatealmostthesamevaluesforthepri- mary’seffectivetemperature.Howevertherelativecontributions ofthecomponentstothetotalluminosityinthespectralregions effective temperature of the secondary component T , mass underconsiderationdodiffersomewhatfromeachother. eff,2 ratioq,andrelativemonochromaticluminositiesoftheprimary componentL inindividualphotometricpass-bands. 1 3.6.Simultaneoussolutionoflightandradialvelocitycurves Torefinethetemperaturesoftheprimarycomponent,which withPHOEBE weobtainedinprevioussections,weappliedanT searchpro- eff,1 cedure. WesubsequentlysolvedtheRVandLCcurvessimulta- The final solution to obtain the binarymasses, radii, and lumi- neouslyforanumberoffixedvaluesofT between10000K- nosities was carried out with the program PHOEBE. The RVs eff,1 11250K.Therunoftheweightedsumofthesquareofresiduals presented in Table 1 and all four LCs obtained from the litera- (χ2=[ΣW(O−C)2])thusobtainedasafunctionoftheeffective ture(JohnsonV observationsweretakenfromViolat-Bordonau temperatureof the primaryis shown in Fig 3. As can be seen (2008), and the Johnson U, B, and V observations from from the figure, χ2 has its lowest value around T =10450 K Özdarcanetal. (2012, and priv.com.)) are solved simultane- eff,1 whichagreeswithT =10750±450KgivenbyÖzdarcanetal. ously. For the temperaturesof the components, the bolometric eff,1 (2012) withinthe uncertaintybars, andso forthefinalsolution albedos A and gravitational darkening coefficients g were 1,2 1,2 weadoptedT =10450K. taken from Claret (2001) and Claret (1998), respectively. The eff,1 limb-darkening coefficients x were computed automatically The final results are shown in Table 5. The values of the 1,2 by PHOEBE from internaltables of the programmewhich were parameters P, i, a, and q given in Table 5 correspond to K = 1 generated according to the models given by Castelli&Kurucz 82.23±0.82kms−1andK =121.29±0.85kms−1,whichmatch 2 (2004).Convergencewasallowedfortheepochofprimarymin- the results of SPEL and KOREL in previous subsections. The imumT ,theorbitalperiodP,thesemi-majoraxisoftherel- modellightandRV curvesare comparedwith the observations min.I ative orbita, systemic velocityV , orbitalinclinationi, dimen- inFig.4.TheyshowasmallRossiter(rotational)effect(Rossiter γ sionless surface potentials of the components Ω and Ω , the 1924)intheRVcurvesnearthephasesofbinaryeclipses. 1 2 Articlenumber,page4of10 Kıranetal.:BasicphysicalelementsofBD+36◦3317 Table5.FinalsolutionforthephysicalpropertiesofBD+36◦3317.TheuncertaintiesarederivedlocallybyPHOEBE fromthecovariancematrix. Element Primary System Secondary T (HJD) 2456803.4598±0.0001 min.I P(d) 4.302152±0.000001 e 0.0(fixed) a(R ) 17.3±0.1 ⊙ V (kms−1) −17.8±0.5 γ x -0.02 0.14 bol A 1.00 0.92 g 1.00 0.90 i(◦) 89.27±0.02 T (K) 10450(fixed) 7623±8.1 eff Ω 10.49±0.02 9.19±0.02 q 0.678±0.002 logg[cgs] 4.29 4.29 (l/l )1U band 0.84±0.01 0.16 tot (l/l )1 Bband 0.83±0.01 0.17 tot (l/l )1V band 0.79±0.01 0.21 tot (l/l )2V band 0.79±0.01 0.21 tot r 0.1019±0.0002 0.0844±0.0002 pole r 0.1021±0.0002 0.0846±0.0002 point r 0.1020±0.0002 0.0845±0.0002 side r 0.1021±0.0002 0.0846±0.0002 back (N)3 6847 χ2 11987 Notes.1Özdarcanetal.(2012),2Violat-Bordonau(2008),3thetotalnumberoftheobserved(LCandRV)points. (2005),wecalculatedthede-reddenedmagnitudes,colours,dis- 12400 tance moduli and the distances of the components. These are also given in Table 6. Considering that the primary is much 12300 brighter than the secondary, we weighted the individually de- rived distances to the components with their luminosities and estimatedthemeandistancetothesystemasd =330±29pc. 12200 In Fig. 5 we show the positions of the components in the 2 Hertzsprung-Russell(HR) diagram, with the ZAMS line taken c fromClaret&Giménez(1989)forthesolarcomposition. Both 12100 componentsareclearlylocatedveryclosetoZAMS.Inthesame figure, the evolutionary tracks by Bertellietal. (2009) for the compositionofz=0.017,y=0.3arealsoshown.Theseagreewell 12000 withthemassesofthecomponentsthatwederived. 11900 9800 10000 10200 10400 10600 10800 11000 11200 11400 4. IsBD+36◦3317amemberoftheδLyrcluster? T eff,1 Although there were some doubts about the very exis- tence of the δ Lyr (Stephenson 1) cluster, Kharchenkoetal. Fig.3. Searchforthebestvalueoftheeffectivetemperature(T ) eff,1 (2005),Kharchenkoetal.(2013)andDiasetal.(2014)havein- forprimarycomponentwithPHOEBE solutions. cluded δ Lyr cluster in their open clusters (OCs) catalogues. Kharchenkoetal.(2004)andKharchenkoetal.(2013)usethree differentcriteria forthe membershipof individualstarsin each 3.7.Physicalpropertiesofthesystem consideredcluster: propermotionsP ,photometricproperties kin Using the results of the final solution from Table 5, we calcu- P , and spatial properties P of the stars, respectively. For ph sp lated the basic physical properties of the components. These δ Lyr cluster, Kharchenkoetal. (2013) give E(B−V)= 0m.031, aresummarisedinTable6. Themassesoftheprimaryandsec- RV=−27.5kms−1,anddistanced =373pc. ondary components are consistent with the spectral types A3 Foranindependentdeterminationofthereddeninganddis- V and F2 V, respectively. Using the observed V-band magni- tancemodulusoftheopenclusterδLyr,wedecidedtouseonly tude outside the eclipses and (U−B) and (B−V) colours given thestars thathavemembershipprobabilitiesover50 %in each by Özdarcanetal. (2012), the relative luminosities from the of the three criteria used by Kharchenkoetal. (2004). They PHOEBE solution, and the bolometric corrections from Gray are listed in Table 7. To fit the theoretical main sequence of Articlenumber,page5of10 2.2 8.0 2.0 U Ozdarcan et al. (2012) 1.8 9.0 2.5 M sun 1.6 B Ozdarcan et al. (2012) + 1m.0 )un 1.4 2.2 Msun 10.0 Ls L/ mag V Ozdarcan et al. (2012) + 2m.0 log ( 1.2 1.0 11.0 1.6 M sun 0.8 V Violat-Bordonau (2008) + 3m.0 1.5 Msun 0.6 12.0 0.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 log T eff 13.0 0.4 0.6 0.8 1.0 1.2 Fig. 5. Positions of the primary (black filled dot) and secondary phase (bluefilledtriangle)componentsintheHRdiagram. Theredsolidline 200 representstheZAMSfromtheClaret&Giménez(1989)models. The evolutionarytrackslabelledwiththecorresponding model massesare 150 takenfromBertellietal.(2009). 100 Table6.BasicpropertiesofBD+36◦3317. 50 s) Element Primary Secondary m/ k 0 V ( M (M⊙) 2.24±0.07 1.52±0.03 R R (R ) 1.76±0.01 1.46±0.01 -50 ⊙ T (K) 10450±420 7623±328 eff -100 logL (L⊙) 1.52±0.08 0.81±0.07 M (mag) 0.9±0.2 2.7±0.2 bol -150 logg [cgs] 4.29±0.01 4.29±0.01 (b) V0 (mag) 9.02±0.01 10.44±0.01 -200 (B−V) (mag) 0.017±0.014 0.316±0.014 0.4 0.6 0.8 1 1.2 BC (mag) -0.310 0.028 phase (B−V) (mag) −0.037±0.014 0.243±0.014 0 Fig.4. (a)Observed(dots)andtheoretical(solidlines)lightcurvesof E(B−V) (mag) 0.054 0.073 BD+36◦3317. Thetheoreticalcurvesarecalculatedusingtheparame- M (mag) 1.25±0.17 2.69±0.19 tersgiveninTable5. (b)AphaseplotofRVsofBD+36◦3317. Black v (m−M) (mag) 7.77±0.18 7.75±0.19 dotsandopencirclesdenotetheRVsoftheprimaryandsecondary,re- v A (mag) 0.17±0.04 0.23±0.04 spectively. SolidlinesshowthetheoreticalRVcurvesderivedwiththe v PHOEBE program (see Section 3.6). We note the presence of a small d (pc) 332 320 Rossiter(rotational)effect. of the distance modulus by hand, to find the smallest standard the cluster in both colour-colour diagram (hereafter CCD) and deviationσ(m− M) for the differencesbetween the theoretical colour-magnitude diagram (hereafter CMD), we consider only andobservedmainsequences.Consequently,theresultingvalue thesehighlyprobableclustermembers.Thetheoreticalmainse- ofthedistancemoduluscorrespondstothesmallesterrorofdis- quencesin CCD and CMD are shifted along the axes to fit the tance d for the value of the corresponding E(B−V), too. The observedmainsequences. procedure was then repeated with a new value for the redden- We used the theoretical main sequence given by Johnson ing. We show the variation of the smallest standard deviation (1966) and Schmidt-Kaler (1982) and represented it by a sixth σ(m− M), which was obtained for the cluster’s distance mod- order polynomial. Then we fitted this polynomial to the most ulus as a function of the reddening in Fig. 6. This shows that probable members of δ Lyr cluster. After this, we carried out anerrorof0.01magfor E(B−V)isacceptableandweadopted asearchingprocedureforthecolourexcessE(B−V). Todoso, E(B−V)=0m.06±0.01forthecluster. Thisvalueoftheredden- we first shifted the theoreticalmain sequence along the (B−V) ing corresponds to an apparent distance modulus (m − M) = v axisforagivenvalueofE(B−V),andthendeterminedthevalue 7m.98±0.13. Adoptingthe visualextinction A = 3.1E(B−V), v Articlenumber,page6of10 Kıranetal.:BasicphysicalelementsofBD+36◦3317 Table7. MostprobablemembersoftheδLyrcluster. 0.1320 WEBDANo TYCNo Pkin Pph Psp 0.1315 11 26501250 0.82 0.56 1.00 0.1310 528 26501237 0.69 1.00 1.00 529 26502146 0.93 1.00 1.00 533 26511056 0.98 0.81 1.00 M) 0.1305 − m 542* 2651802 0.67 0.91 1.00 ( 0.1300 s 545 2651882 0.94 0.73 1.00 96 2651772 0.76 1.00 1.00 0.1295 552 2651189 0.99 1.00 1.00 (*)BD+36◦3317. 0.1290 0.1285 Table8. RVmeasurementsofstarsinδLyrcluster. 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 E(B−V) Name RV References Notes Fig.6. IterativedeterminationoftheoptimalE(B−V)–seetextfor details. HD174959 −12.4±2.4 1 – HD175081 −26.0±7.4 2 – δ Lyr −17.2±4.3 1 spectroscopicbinary 0 1 δ Lyr −25.5±0.5 1 pulsatingstar 2 BD+36◦3317 −17.8±0.5 thisstudy EB References.(1)Gontcharov(2006);(2)Kharchenkoetal.(2007). 5 we obtain A = 0.19 mag and the distance of δ Lyr cluster of v 362±22pc,lowerthanthatfoundbyKharchenkoetal.(2013). 10 In addition, we estimate a reddening of about 0m.04 in (U−B) V from the CCD, as shown in Fig. 7. In Fig. 7 the photometric UBVdata were taken from Eggen (1968) and Bronkalla (1963) and the stars in the vicinity of the δ Lyr cluster are shown, as 15 wellasthemostprobableclustermembersandtheprimaryand secondarycomponentsofBD+36◦3317. Kharchenkoetal. (2005) givethe cluster radiusas 0.87de- grees and RV= −21.6 km s−1 (compared with -27.5 km s−1 in Kharchenkoetal.2013). OnlyfourstarshavetheRV measure- 20 mentsintheδLyrclusterfield. ThesestarsandtheRVmeasure- ments are given in Table 8. Low membership probabilitiesare -0.5 0.0 0.5 1.0 1.5 2.0 given for δ Lyr and HD 174959 in (Kharchenkoetal. 2013). 2 B-V However the probabilities of the membership for δ Lyr and 1 HD175081arehigher. ThesystemicRVofBD+36◦3317from Fig.8. HRdiagramofδLyrcluster.Thetrianglesandsquaresdenote oursolutionagreeswithδ1Lyr,butnotwithHD175081.Never- theprimaryandsecondarycomponents,respectively. Blackdotsrepre- theless,thelocationsofthecomponentsofBD+36◦3317inboth sentthestarsinthefieldoftheclusterandthebigbluedots,thestars CCDandCMD(seeFig.7),areingoodagreementwiththeother having high membership probability. Padova isochrones taken from highlyprobablemembersofthecluster. Also,Kharchenkoetal. Bertellietal.(2009)areshown for thereddening of 0m.06andtheap- (2004, 2013) classify the system as a highlyprobablemember. parent distance modulus of 7m.98. The isochrones shown are for 25 (red line) and 32 (blue line) Myrs and for the chemical composition Theadopteddistance,whichistheluminosity-weightedaverage (y,z)=(0.3,0.017). of the distances obtained for the components from Table 6, is 330±29pc,consistentwiththecluster’sdistance(362±22pc) withinthequotederrors. So, we concludethatBD+36◦3317is 3×107yrsforthecluster. Thisvalueisalsoingoodaccordance oneofthemostprobablemembersoftheδLyrcluster,although with the evolutionarystatus of BD+36◦3317, as pointed out in obtainingmoreobservations,inparticularRVs,formorecluster Sec. 3.7. membercandidatesisstillverydesirable. At this point we decided to estimate the age of the cluster. Sowetriedtoobtainbestisochronefittingfortheclusterbyus- 5. Conclusion ing only the most probable members given in Table 7. To do so, we considered both the turn-off point and the slope of the Obtaining and studying the first series of electronic spectra of main sequencetogether. We comparedourCMD with the YZ- BD+36◦3317andsolvingtheRVcurvesofbothbinarycompo- VARPadovaIsochronesproducedbyBertellietal. (2009). We nentstogetherwithalreadypublishedlightcurves,weobtained obtainedthebestfitfortheisochroneof(y,z) = (0.3,0.017)for thefirstcompletesetofbasicphysicalpropertiesforthiseclips- the cluster. Finally, as seen in Fig. 8, the age of the cluster is ing binary, which is a probable member of δ Lyr cluster. The between logt = 7.4 and 7.5. So we accepted an age of about resultscanbesummarisedasfollows. Articlenumber,page7of10 -1.5 0 -1.0 5 -0.5 0.0 10 B U- V 0.5 15 1.0 1.5 20 2.0 -0.5 0.0 0.5 1.0 1.5 2.0 -0.5 0.0 0.5 1.0 1.5 2.0 B-V B-V Fig.7. CCD(leftpanel)andCMD(rightpanel)diagramsforδLyrcluster. ThesolidlinesrepresentthetheoreticalZAMSshiftedinbothaxes byappropriate amounts(seethetext).Thetriangleandsquaresymbols denotetheprimaryandsecondary component, respectively. Blackdots representthestarsinthefieldoftheclusterwhilethebigbluedotsrepresentthestarshavinghighmembershipprobability. 1. Themasses,radii,effectivetemperatures,andabsolutelumi- References nositiessummarisedinTable6showthatbothcomponentsof Anthony-Twarog,B.J.1984,AJ,89,655 BD+36◦3317arelittleevolvedfromtheZAMSandcompat- Bertelli,G.,Nasi,E.,Girardi,L.,&Marigo,P.2009,A&A,508,355 iblewiththepublishedevolutionarymodelsofBertellietal. Bronkalla,W.1963,AstronomischeNachrichten,287,249 (2009). Castelli,F.&Kurucz,R.L.2004,ArXivAstrophysicse-prints,0405087 Claret,A.1998,A&AS,131,395 2. Thespin-orbitsynchronisationforoursolutionwouldpredict Claret,A.2001,MNRAS,327,989 theprojectedrotationalvelocitiesof20.7and17.2kms−1for Claret,A.&Giménez,A.1989,A&AS,81,1 theprimaryandsecondary,respectively. Thisdoesnotcon- deLaverny,P.,Recio-Blanco, A.,Worley,C.C.,&Plez,B.2012,A&A,544, tradictthevaluesweestimatedfromthelineprofiles,taking A126 Dias,W.S.,Monteiro,H.,Caetano,T.C.,etal.2014,A&A,564,A79 theirassociatederrorsintoconsideration. Eggen,O.J.1968,ApJ,152,77 3. WereinforcetheconclusionthatBD+36◦3317isaprobable Eggen,O.J.1972,ApJ,173,63 memberoftheδLyrcluster. Bothbinarycomponentsseem Eggen,O.J.1983,MNRAS,204,391 Frasca,A.,Guillout,P.,Marilli,E.,etal.2006,A&A,454,301 toagreewiththeothermembersofδLyrclusteronthemain Gontcharov,G.A.2006,AstronomyLetters,32,759 sequenceinCMD. Gray, D.F.2005, TheObservation andAnalysis ofStellar Photospheres, 3rd 4. Using the de-reddened magnitudes from our solution in- Edition,UK:CambridgeUniversityPress,533pp dividually for both components, we derived the weighted Hadrava,P.1995,A&AS,114,393 Hadrava,P.1997,A&AS,122,581 mean distance of BD+36◦3317 of 330 ± 29 pc. This dis- Hadrava,P.2004,PublicationsoftheAstronomicalInstituteoftheCzechoslovak tance is within the boundaries of the cluster distance esti- AcademyofSciences,92,15 matedfromCMDofδLyrclusterand,ifthemembershipof Hadrava,P.2009,ArXive-prints,#0909.0172 BD+36◦3317intheclustercanbeconfirmeddefinitively,it Harmanec,P.,Koubský,P.,Nemravová,J.A.,etal.2015,A&A,573,A107 Horn,J.,Kubát,J.,Harmanec,P.,etal.1996,A&A,309,521 wouldrepresentthe mostaccurateestimate forthe distance Johnson,H.L.1966,ARA&A,4,193 oftheδLyrcluster. Kharchenko,N.V.,Piskunov,A.E.,Röser,S.,Schilbach,E.,&Scholz,R.-D. 2004,AstronomischeNachrichten,325,740 Kharchenko,N.V.,Piskunov,A.E.,Röser,S.,Schilbach,E.,&Scholz,R.-D. Acknowledgements. WethanktoDr. O.Özdarcanforsharinghisphotometric dataofBD+36◦3317withus,andtoDr.Ö.Çakırlıforhissupportconcerningthe 2005,A&A,438,1163 programCOMPO2fortemperaturesearchingprocesswiththecompositespectra Kharchenko,N.V.,Piskunov,A.E.,Schilbach,E.,Röser,S.,&Scholz,R.-D. 2013,A&A,558,A53 method.ThevisitofEKinPrahaandOndˇrejovwassupportedbyTheScientific andTechnological ResearchCouncilofTurkey(TÜB˙ITAK)bythefellowship Kharchenko,N.V.,Scholz,R.-D.,Piskunov,A.E.,Röser,S.,&Schilbach,E. ofB˙IDEP-2214International Doctoral Research Fellowship Programme. She 2007,AstronomischeNachrichten,328,889 Nasseri,A.,Chini,R.,Harmanec,P.,etal.2014,A&A,568,A94 thanks colleagues in theAstronomical Institute ofthe Charles University and Özdarcan,O.,Sipahi,E.,&Dal,H.A.2012,NewA,17,483 AstronomicalInstitute oftheAcademyofSciences oftheCzechRepublic for Palacios,A.,Gebran,M.,Josselin,E.,etal.2010,A&A,516,A13 theirhospitalityandhelpduringherstay.ResearchofPH,MW,andJNwassup- Prša,A.&Zwitter,T.2005,ApJ,628,426 portedbygrantsP209/10/0715andGA15-02112SoftheCzechScienceFoun- Prša,A.&Zwitter,T.2006,Ap&SS,36 dationandtheresearchofJNwasadditionallysupportedwithgrantno.250015 Rossiter,R.A.1924,ApJ,60,15 ofGrantAgencyoftheCharlesUniversityinPrague.Webenefitedfromtheuse Schmidt-Kaler,T.,ed.1982,Landolt-Börnstein:NumericalDataandFunctional oftheSIMBADdatabaseandtheVizieRserviceoperatedatCDS,Strasbourg, Relationships in Science and Technology - New Series ” Gruppe/Group 6 FranceandtheNASA’sAstrophysicsDataSystemBibliographic Servicesand Astronomyand Astrophysics ”Volume 2Schaifers/Voigt: Astronomy and theWEBDAopenclusterdatabase. Astrophysics/AstronomieundAstrophysik”StarsandStarClusters/Sterne undSternhaufen Articlenumber,page8of10 Kıranetal.:BasicphysicalelementsofBD+36◦3317 Škoda,P.1996,inAstronomicalSocietyofthePacificConferenceSeries,Vol. 101,AstronomicalDataAnalysisSoftwareandSystemsV,ed.G.H.Jacoby &J.Barnes,187 Stephenson,C.B.1959,PASP,71,145 Škoda,P.&Hadrava,P.2010,inAstronomicalSocietyofthePacificConference Series,Vol.435,Binaries-KeytoComprehensionoftheUniverse,ed.A.Prša &M.Zejda,71 Valdes,F.,Gupta,R.,Rose,J.A.,Singh,H.P.,&Bell,D.J.2004,ApJS,152, 251 Violat-Bordonau,T.,F..-H.2008,InformationBulletinonVariableStars,5900, 7 Wilson,R.E.&Devinney,E.J.1971,ApJ,166,605 Articlenumber,page9of10 A&A–evrim,OnlineMaterialp10 Table1.HeliocentricRVsofBD+36◦3317measuredinSPEFO (mean ofthreespectrallines). HJD−2400000 RV RV 1 2 (kms−1) (kms−1) 56744.5862 -91.3±1.2 91.7±1.2 56746.4816 63.5±0.7 -143.6±0.2 56764.4510 11.3±0.2 -63.8±2.0 56765.4209 -89.4±0.3 90.5±1.3 56778.4182 -93.4±0.3 94.3±0.4 56782.5511 -86.4±1.3 76.4±3.3 56799.5499 -67.4±0.2 56.9±1.5 56815.5215 59.5±0.6 -135.4±0.0 56816.3854 -24.5±1.3 – 56817.4476 -100.2±0.3 100.7±0.6 56819.3930 61.3±0.8 -138.0±0.2 56822.4202 -61.3±0.3 44.0±0.2 56826.4377 -88.0±0.1 78.7±1.4 56827.5433 31.1±0.6 – 56852.4845 -63.2±1.5 51.9±1.0 56852.5226 -61.6±0.2 47.9±4.6 56861.5258 -14.6±0.5 – 56862.4931 62.4±0.9 -139.8±0.0 56865.4533 58.2±0.3 41.0±0.6 56866.5585 52.1±0.9 -115.5±0.9

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.