ebook img

System Dependability Evaluation Including S-dependency and Uncertainty: Model-Driven Dependability Analyses PDF

398 Pages·2018·7.55 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview System Dependability Evaluation Including S-dependency and Uncertainty: Model-Driven Dependability Analyses

Hans-Dieter Kochs System Dependability Evaluation Including S-dependency and Uncertainty Model-Driven Dependability Analyses System Dependability Evaluation Including S-dependency and Uncertainty Hans-Dieter Kochs System Dependability Evaluation Including S-dependency and Uncertainty Model-Driven Dependability Analyses 1 3 Hans-Dieter Kochs Lehrstuhl für Informationslogistik Universität Duisburg-Essen Duisburg Germany ISBN 978-3-319-64990-0 ISBN 978-3-319-64991-7 (eBook) DOI 10.1007/978-3-319-64991-7 Library of Congress Control Number: 2017950274 © Springer International Publishing AG 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Printed on acid-free paper This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland Preface The introduction of new technologies and the increasing complexity of systems make dependability (reliability and availability, defined in IEC 60050-192:2015) analyses in- dispensable in avoiding economic disaster and huge penalties in the case of unreli- able systems. Poor dependability can cause expensive rectification and loss of trust, reputation, and market share. Thus, dependability modeling and evaluation should be basic tasks of every systems engineer. Their results should be fixed in technical specifications and contracts by manufacturers and customers of industrial systems. Stochastic dependency (s-dependency) between components and the influence of uncertainty can have significant impact on system dependability. In practice, s-de- pendency and uncertainty are often not taken into account. The book focuses on system dependability modeling and calculation, considering the impact of s-dependency and uncertainty. The best suited approaches for practical sys- tem dependability modeling and calculation, (1) the minimal cut approach, (2) the Markov process approach, and (3) the Markov minimal cut approach as a combina- tion of (1) and (2) are described in detail and applied to several examples. The strin- gently used Boolean logic during the whole development process of the approaches is the key for the combination of the approaches on a common basis. For large and complex systems, efficient approximation approaches, e.g. the probable Markov path approach, have been developed, which can take into account s-dependencies be- tween components of complex system structures. A comprehensive analysis of alea- tory uncertainty (due to randomness) and epistemic uncertainty (due to lack of knowl- edge), and their combination, developed on the basis of basic reliability indices and evaluated with the Monte Carlo simulation method, has been carried out. The uncer- tainty impact on system dependability is investigated and discussed using several ex- amples at different levels of difficulty. The applications cover a wide variety of large and complex (real-world) systems. Actual state-of-the-art definitions of terms of the IEC 60050-192:2015 standard, as well as the dependability indices, are used uniformly in all six chapters of the book. Pre-knowledge: Mathematical interest, basic knowledge of Boolean algebra, probabil- ity theory, and theory of stochastic processes. V Preface VI Why this book? The vast majority of current books and publications on dependability is highly mathematical and often only for small systems. The intention of this book is to bridge the gap between theory and practice, and to concentrate on easy and effective approaches for dependability analyses of systems including s-depend- ency and uncertainty, which have been proved to be applicable to industrial systems. The developed modeling and calculation approaches are embedded in a framework consisting of 8 steps, based on the author’s theoretical and industrial dependability experience and application over several decades. A further aim of the book is also to emphasize the close relationship between network models and Markov models, based on the Boolean logic, which easily (and clearly) enables their combination. The developed approaches are applicable to all large and complex systems that can be structured as illustrated in Fig. 1.1, 3.7, and 5.1, which apply to all industrial systems within the scope of this book. The aspiration of the author is to describe depend- ability theory and its application in an understandable and applicable way. The depend- ability approaches are compatible for all systems. What the book is not? The book is not a summary or a collection of the wide variety of pure theoretical dependability evaluation approaches. Acknowledgements: I am greatly indebted and wish to thank all my colleagues and my former research assistants at my chair of Computer Engineering and Information Logistics at the University of Duisburg-Essen, Germany, for their innovative contribu- tion and cooperation around the scope of dependability. I am also grateful to my col- leagues from the Cooperative Institute of Mechatronik (imech) and the Collaborative Research Centre 291 (Speaker Prof. M. Hiller) of the German Research Foundation DFG, which have enabled extensive applied research work on system dependability. Furthermore, the periodical meetings of the Fault Tolerant Discussion Panel (FTDP), which took place alternately at different universities, have provided continuous stimulus over the last 25 years. Representative for the FTDP, I particularly would like to thank Prof. K. Echtle and Prof. W. G. Schneeweiss (initiators of FTDP) for their valuable contributions and substantial discussions. I would like to thank all industrial coopera- tion partners. The research cooperation with industry, especially the cooperation with ABB Ladenburg, Germany, and ABB Basel, Switzerland, on areas such as automa- tion and control systems, was very productive and stimulates new ideas concerning the applicability of the developed dependability approaches. Research on the topic uncertainty was carried out by Dr. Ph. Limbourg and Dr. P. Kongniratsaikul in co- operation with Dr. F. Lutz (IPL technology). The close combination of theory and Preface VII practice in different application areas gave valuable impulses for the improvement of the approaches, which are described in this book. Furthermore, I would like to thank Dr. J. Petersen for the continual cooperation and discussions as well as for the technical support. I am very grateful to Ms. S. Heidtmann for a large number of rele- vant remarks and the correction of the manuscript. The author thanks the International Electrotechnical Commission (IEC) for permis- sion to reproduce Information from its International Standards. All such extracts are copyright of IEC, Geneva, Switzerland. All rights reserved. Further information on the IEC is available from www.iec.ch. IEC has no responsibility for the placement and context in which the extracts and contents are reproduced by the author, nor is IEC in any way responsible for the other content or accuracy therein (IEC 60050-192 ed. 1.0, Copyright © 2015 IEC Geneva, Switzerland. www.iec.ch). The author thanks the Management of the Museum for Communication Berlin and Mr. St. Sous (artist) for the permission to take photos for analyzing the stagecoach, which is exhibited as an art object (slogan “Berliner Luft Post“) in an exploded view. It offers a unique and clear insight into its construction details, which is used favorably for the system dependability analysis (Chapter 3.9). Finally, but by no means least, I would like to particularly highlight and cordially thank my wife Anne for her persevarence and encouragement of the work. Without it, it would not have been possible to produce the book. Professional career: Hans-Dieter Kochs was head of the Chair of Computer Engi- neering and Information Logistics at the University Duisburg-Essen, Germany (retired 2009). He received a Diploma-Degree in Electrical Engineering (1972) and a Dr.-Ing. Degree (1976) from the Technical University (RWTH) Aachen, Germany. From 1972 to 1979 he was a member of the Institute of Power Systems and Power Economics (IAEW) at the RWTH Aachen (Prof. K.W. Edwin) as a research assistant. From 1979 to 1991 he had leading positions in industry (AEG/Daimler Frankfurt, FAG Kugel- fischer Erlangen, and ESWE Wiesbaden, Germany). Since 1991, he has been a full Professor. From 1972 up till now he has been engaged in scientific and industrial de- pendability analysis and studies. (e-mail: [email protected]) Special thanks are also due to the Springer staff, especially Dr. J.-Ph. Schmidt and Ms. P. Jantzen as well as the Springer production team of Mr. Jayanthan Veeraraghavan for their editorial support. Content Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V List of definitions.....................................................................................................................................XV List of figures.........................................................................................................................................XVII List of tables..........................................................................................................................................XXV List of symbols and abbreviations..........................................................................................XXVII 1 Definitions and objective ..................................................................................... 1 1.1 Definition of basic terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Objective of system dependability evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 Brief review of system dependability approaches........................................ 23 2.1 Application area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2 Assessment criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3 Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 2.4 Framework for system dependability modeling and evaluation . . . . . . . . . . . . . . . . . . . 32 2.5 Notes on guarantee declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3 Network approaches............................................................................................ 39 3.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2 Input data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.3 Basic network models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.3.1 Series system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.3.2 Parallels ystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.4 Minimal cut (MC) approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.4.1 Definitions and preconditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.4.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.4.3 Calculation of the objective indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.4.4 Calculation of the MC indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.5 Minimal path (MP) approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.5.1 Definitions and preconditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.5.2 Examples .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.5.3 Calculation of the objective indices ........................................................... 54 3.5.4 Calculation of the MP indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.6 Approximation: Probable minimal cut (pMC) approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.6.1 Mathematical basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.6.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.6.3 Reduction of system model complexity by MC segmentation . . . . . . . . . 62 IX Content Page 2 of X4 3.6.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.6.5 Conclusive remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.7 Interrelation between combination approach and MC/MP approach . . . . . . . . 66 3.7.1 Example: Series structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.7.1.1 Combination approach (Truth table) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.7.1.2 MC approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.7.1.3 MC/MP approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.7.2 Example: Parallel structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.7.2.1 Combination approach (Truth table) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.7.2.2 MC approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.7.2.3 MC/MP approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.7.3 Combination approach( Trutht able)v ersusM C/MPa pproach . . . . . . . 74 3.8 Historical example 1: Communication chain in ancient Persia 500 BC . . . . . 76 3.9 Historical example 2: Horse-drawn stagecoach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 3.10Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 3.10.1 Derivation of Eq. 1.137 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 3.10.2 Derivation of VFC2DF, VFC2FD,and VMC2DF . . . . . . . . . . . . . . . . . . . . . . . . . .1 17 4 State-space approach ........................................................................................... 125 4.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 4.2 Input data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 4.3 Definition of different types of stochastic processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 4.3.1 2-state process model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 4.3.2 Multi-state process model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 33 4.4.Markov modeling and calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 39 4.4.1 Markov equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 4.4.2 Modeling of components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 40 4.4.3 Modeling and calculation of systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 4.4.3.1 Analytical approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 4.4.3.2 Numerical iteration approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 44 4.4.3.3 Objective indices of a parallel structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 4.4.3.4 Objective indices of a series structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 4.5 Approximation: Probable Markov path (pMp) approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 4.5.1 Mathematical basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 4.5.2 System with two s-independent components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 4.5.2.1 pMp calculation of the parallel system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 4.5.2.2 pMp calculation of the series system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 4.5.3 r-out-of-n system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 4.5.4 System of 4.5.2.1 with limited repair capacity and repair priority . . . . . . . 161 4.5.5 System of 4.5.4 with common cause failures (CCF) . . . . . . . . . . . . . . . . . . . . . . . . . .1 64 Content Page 3 ofX 4I 4.5.6 System of 4.5.4 with scheduled maintenance ..................................168 4.5.7 Segmentation of the Markov model of 4.5.6 and aggregation of the partial Markov models ........................................................................170 4.5.8 System with redundancy switching ......................................................172 4.5.8.1 pMp approach ............................................................................173 4.5.8.2 Numerical iteration approach ...............................................175 4.5.8.3 Examples ......................................................................................176 4.5.9 System excluding repair during system operation ..........................177 4.5.9.1 Long-term process behavior ................................................178 4.5.9.2 Short-term process behavior ................................................180 4.5.10 Item with periodic fault diagnosis ...........................................................181 4.5.11 Paradox of the periodic inspection and the short-term behavior. .....188 4.6 Appendix .........................................................................................................................190 4.6.1 Modeling and calculation of the alternating 2-state renewal process in Fig. 4.2 .......................................................................................190 4.6.2 Decision trees of the processes [Z(t),t>0] graphically high- lighted in Fig. 4.6-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 5 Markov minimal cut (MMC) approach..............................................................203 5.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 5.2 S-dependency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 5.3 Integration of Markov process models into minimal cuts - MMC approach . . . 207 5.4 Definition of various types of s-dependency and their impact . . . . . . . . . . . . . . . . . . . 209 5.4.1 S-dependency of type 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 5.4.2 S-dependency of type 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 5.5 Theoretical study example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 5.6 Set of examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 5.7 Theoretical study example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 5.8 General conclusions concerning MMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 5.9 Application example 1: Process automation and control system . . . . . . . . . . . . . . 231 5.10 Application example 2: Mechatronic system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 5.11 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 5.11.1 Derivation of the c term of Eq. 5.45 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266 5.11.2 Steady state of the MMC model, Fig. 5.19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .267 5.11.3 Steady state of the MMC model, Fig. 5.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .269 5.11.4 Steady state of the MMC model, Fig. 5.21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271 5.11.5 Transient state of the MMC model, Fig. 5.19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .272 5.11.6 Transient state of the MMC model, Fig. 5.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .275 5.11.7 Transient state of the MMC model, Fig. 5.21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .277

Description:
The book focuses on system dependability modeling and calculation, considering the impact of s-dependency and uncertainty. The best suited approaches for practical system dependability modeling and calculation, (1) the minimal cut approach, (2) the Markov process approach, and (3) the Markov minimal
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.