ebook img

Parallax and masses of alpha Centauri revisited PDF

0.14 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Parallax and masses of alpha Centauri revisited

Astronomy&Astrophysicsmanuscriptno.alphaCen2015 (cid:13)cESO2016 January8,2016 α ⋆ Parallax and masses of Centauri revisited DimitriPourbaix1,⋆⋆ andHenriM.J.Boffin2 1 Institutd’Astronomieetd’Astrophysique,UniversitéLibredeBruxelles(ULB),Belgium e-mail:[email protected] 2 ESO,AlonsodeCórdova3107Vitacura,Casilla19001Santiago,Chile Received30/11/2015;accepted04/01/2016 6 ABSTRACT 1 0 Context.DespitethethoroughworkofvanLeeuwen(2007),theparallaxofαCentauriisstillfarfrombeingcarvedinstone.Any 2 derivationoftheindividualmassesisthereforeuncertain,ifnotquestionable.Andyet,thatdoesnotpreventthissystemfrombeing usedforcalibrationpurposeinseveralstudies. n Aims.Obtainingmoreaccuratemodel-freeparallaxandindividualmassesofthissystem. a Methods.WithHARPS,theradialvelocitiesarenotonlyprecisebutalsoaccurate.TenyearsofHARPSdataareenoughtoderive J thecomplementofthevisualorbitforafull3DorbitofαCen. 7 Results.WelocateαCen(743mas)rightwhereHipparcos(ESA1997)hadputit,i.e.slightlyfurtherawaythanderivedbySöder- hjelm(1999). Thecomponents arethusabitmoremassive thanpreviously thought (1.13and 0.97M for Aand Brespectively). ⊙ ] Thesevaluesarenowinexcellentagreementwiththelatestasteroseismologicresults. R S Keywords. astrometry–(stars)binaries:spectroscopic–techniques:spectroscopy . h p 1. Introduction componentsofαCen,yieldinganupwardrevisionofthemasses. - o Owingtothespecialinterestoftheasteroseismologycommunity The Sun is a single star and as such is among the minority r for this system, an international team was gathered later on to tof solar-like stars which are mostly within binaries or multi- s obtainsomeaccurateradialvelocitiesofbothcomponents.The aplesystems(Duquennoy&Mayor1991;Halbwachsetal.2003; outcomewas a set precise radialvelocitieswhich were used to [Raghavanetal. 2010; Whitworth&Lomax 2015). Our closest quantify the relative convective blue shift of both components, neighbour– the system comprisingα Centauri A, B and Prox- 1 assuming the individual masses and the parallax of the system ima Centauri – is therefore more representative. α Centauri A v (Pourbaixetal.2002). and B (HIP 71683/1), with spectral types G2V and K1V, are 6 Even if it turned out to be a false detection (Hatzes 2013; 3in a binary system with an orbital period close to 79.91 years Rajpauletal. 2015), the announcementof a planetarycompan- 6(Heintz1982;Pourbaixetal.1999;Torresetal.2010)andadis- ion around α Cen B (Dumusqueetal. 2012) suddenly resur- 1tance of 1.35 pc. The A and B pair offers a unique possibil- rected the interest of the planet hunters for that stellar system 0ity to study stellar physics in stars that are only slightly dif- (Kaltenegger&Haghighipour 2013). We therefore decided to .ferent from our own Sun. Their masses – 1.1 and 0.9 Msun 1 determine for the first time, in a self-consistent manner, the 0– nicely bracket that of our neighbour star, and they are only individual masses, the parallax, and the net shift caused by 6slightlyolderthantheSun.Thus,αCenisanideallaboratoryfor gravitation and convection, using an extensive set of homoge- 1stellar evolution (e.g.Kervellaetal. 2003; PortodeMelloetal. neousandaccurateradialvelocitiesofbothcomponentsfromthe :2008; Brunttetal. 2010; Bazotetal. 2012), asteroseismology v ESOHARPSsciencearchive.Theobservationsaredescribedin (Kjeldsenetal. 2008;deMeulenaeretal. 2010) andextra-solar i Sect.2whiletheadoptedmodelusedtofitthemisdescribedin Xplanet searches (Dumusqueetal. 2012; Rajpauletal. 2015; Sect.3.ResultsarelistedinSect.4anddiscussedinthecontext rBergmannetal.2015;Endletal.2015).Assuchitiscrucialto ofasteroseismologyinSect.5. adetermine with the highest accuracy the properties of the two starsinαCen,whichcanbedoneasdouble-linedspectroscopic visualbinaries,thusofferingahypothesis-freedeterminationof 2. Observationaldata the distance and individual masses (Pourbaix 1998). One also needs to have the most precise orbital elements to disentan- α Cen has been the target of many radial velocities (RV) mea- gle any other effects, such as oscillations or the presence of a surements,especially, with HARPS, the High AccuracyRadial planetary-masscompanion. velocity Planet Searcher at the ESO La Silla 3.6m telescope. Pourbaixetal. (1999) presented the first simultaneous ad- ThevacuumandthermallyisolatedHARPSinstrumenthasbeen justment of the relative positions and radial velocities of both especiallydesignedforhigh-precisionradialvelocitiesobserva- tions(Mayoretal. 2003), reachingfor examplea dispersionof ⋆ Based on data obtained from the ESO Science Archive Faci- 0.64ms−1over500days(Lovisetal.2006). lityunderrequestnumbersHBOFFIN/190700,Pourbaix/192287,Pour- baix/192364, Pourbaix/192404, Pourbaix/192552, Pourbaix/192630, The velocitiesof bothcomponentsof α Cen were retrieved andPourbaix/199124. fromtheHARPSarchivemaintainedbyESO:2015velocitiesfor ⋆⋆ SeniorResearchAssociate,F.R.S.-FNRS,Belgium Aand4303forB.Despitethepossibilityofselectingthetarget AA/2015/27859,page1of4 A&Aproofs:manuscriptno.alphaCen2015 ontheESOarchiveinterface,avisualinspectionwasnecessary 3. Model toassignthevelocitiestotherightcomponent.Furtherimposing The model used by Pourbaixetal. (1999) assumes that the that the seeing does not exceed 1 arcsec so as to avoid α Cen measured radial velocities represent the radial velocities of the A contaminating α Cen B and vice versa (as suggested by the barycentreofeachcomponent: referee, Xavier Dumusque), limited these observations to 710 and1951forAandBrespectively.Theimportanceofthisdata V =V −K (ecosω +cos(ω +v)), A 0 A B B (1) set lies in the simultaneousor quasi simultaneousobservations V =V +K (ecosω +cos(ω +v)), B 0 B B B ofbothcomponentswithaninstrumentthatprovidesRVsonan whereV denotesthesystemicvelocity,ω theargumentofthe almostabsolutescale. 0 B periastronofcomponentB,etheeccentricity,vthetrueanomaly, WeusedtheradialvelocitiesprovidedbytheHARPSpipe- andK arethesemi-amplitudesoftheradialvelocitiesofboth line. For α Cen A, the RV is obtained by cross-correlating the A,B components. spectrawithaG2VfluxtemplatewhichistheFouriertransform Whereas thatassumption was realistic in the past when the spectrometer (FTS) spectrum of the Sun (Kuruczetal. 1984), radialvelocities were precise to a few hundredmeters per sec- andcalibratedsoastohaveanoffsetinthezero-pointof102.5 m s−1 (Molaroetal. 2013). For α Cen B, the cross-correlation ond,some effects popup as soon as the precisionimproves.In order to recover the accuracy of the barycentre velocity, these wasdonewithaK5template.Themedianofthevelocitypreci- sionforAandBarerespectively0.16and0.12ms−1(Fig.1). effects have to be corrected for, either individually or globally. Withrelativeradialvelocitiesofbothcomponents,theseeffects wouldhavetobemodelled.WithHARPSmeasuringbothcom- ponentsinthesamereferenceframe,itispossibletomeasurethe correctiontobeappliedglobally. Assumingthegravitationalredshiftandconvectiveblueshift ofagivencomponentdonotchangeoverthespectroscopicob- servationbaseline,theneteffectofthetwoshiftsisjustavertical translation of the radial velocity curve (the dates of the mini- mumsandmaximumsofthecurveremainunchanged).Nomor- phologicalchangeofthecurveitselfisanticipated.Theneteffect ofthefourshiftsis thereforea verticaltranslationof onecurve withrespecttotheother. Suchaverticaltranslationcaneasilybemodelledwithanad- ditionaltermin,say,theradialvelocityofcomponentB(Eq.1): V =V +K (ecosω +cos(ω +v))+∆V . (2) B 0 B B B B Itisworthpointingthat,whereasPourbaix(1998)advocatedfor asimultaneousadjustmentofthevisualandspectroscopicdata, this∆V termhastobeintroducedbecausethesolutionsforV B A and V are obtained simultaneously! Indeed, if the two curves B weremodelledindependently,twodistinctV wouldbeobtained 0 but K and K wouldrepresentthe semi-amplitudesofthe two A B curves. Without ∆V , the simultaneousfit introducesa bias on B V ,K ,andK . 0 A B Theorbitofthestellarsystembeingouronlygoal,noshort timescalevariation(Dumusqueetal.2011,2015)ismodelledin Fig. 1. Distribution of the estimated radial velocity uncertainties re- thepresentinvestigation. portedbytheHARPSpipelineforcomponentA(left)andB(right). 4. Results The HARPS data cover 11 years only (13% of the orbital period),but at the crucialtime when the radial velocitiescross Despite the absence of visual departure between the fit of the (seeFig.2).TheHARPSdatawerecompletedwithsomeolder presentdataset with and without ∆ V , the parallaxes differ by B ESO data (Endletal. 2001), obtained with the Coudé Echelle 2%(smallerwithoutshift),directlyimpactingthetotalmassby Spectrograph(CES)atthe1.4-mCoudéAuxiliaryTelescopeand thesame amountasthe fractionalmassremainsessentially un- later,atthe3.6-mtelescope,bothinLaSilla,toextendthebase- changed.Thereducedχ2increasesfrom1.01to1.21withoutthe line and to help improvingthe precision of the fractionalmass shift.Therevisionofthemodelisthusjustified.Theorbitalele- (κ= M /(M +M )).Thesevelocitiesbeingrelative,thedatasets mentsaregiveninTab.1togetherwiththe2002resultsandthe B A B ofAandBwereshiftedtosharetheHARPSzeropoint. orbitisplottedinFig.2. These very accurate radial velocities were complemented Therevisedorbitalparallax(743±1.3mas)issmallerthan with the same visual observations (both micrometric and pho- thevaluederivedbySöderhjelm(1999)fromtheHipparcosob- tographic)asusedinourpreviousinvestigation(Pourbaixetal. servationsandadoptedbyPourbaixetal.(2002).Itissomewhat 1999).Accordingtoitswebportal,theWashingtondoublestar closer to the original Hipparcos value, 742 ± 1.42 mas (ESA catalogue (Hartkopfetal. 2001) holds 37 additional visual ob- 1997), and rules out the result obtained in the revision of the servations(upto2014.241)withrespecttoouroriginalinvesti- Hipparcoscatalogue(vanLeeuwen2007)wherethe parallaxis gation.ThesedatawerekindlyprovidedbytheWDSteamand 754.81±4.11mas.Eventhoughtheparallaxisdifferent,theto- addedtothe1999datasetforthesakeofcompleteness.Inprac- talmassofthesystemperfectlymatchesthe’photometric’esti- tice,noparameterfromthevisualorbitwasaffected. mate from Malkovetal. (2012), thus indicating some possible AA/2015/27859,page2of4 DimitriPourbaixandHenriM.J.Boffin:ParallaxandmassesofαCentaurirevisited flaw in their mass-luminosity relation. Our value of the mass of component B seems to favour the asteroseismology-based 0.97± 0.04 M by Lundkvistetal. (2014) over the 0.921 M ⊙ ⊙ basedonisochroneinterpolation(Boyajianetal.2013). Table 1. Orbital solutions from Pourbaixetal. (2002), this work us- ingHARPSandsomeolderESOCoudéEchellevelocities(Endletal. 2001). HARPS+ESO Element Original CoudéEchelle a(′′) 17.57±0.022 17.66±0.026 i(◦) 79.20±0.041 79.32±0.044 ω(◦) 231.65±0.076 232.3±0.11 Ω(◦) 204.85±0.084 204.75±0.087 e 0.5179±0.00076 0.524±0.0011 P(yr) 79.91±0.011 79.91±0.013 T (Julianyear) 1875.66±0.012 1955.66±0.014 V (kms) −22.445±0.0021 −22.390±0.0042 0 ̟(mas) 747.1±1.2(adopted) 743±1.3 κ 0.4581±0.00098 0.4617±0.00044 ∆V (m/s) 0.0(adopted) 329±9.0 B M (M ) 1.105±0.0070 1.133±0.0050 A ⊙ M (M ) 0.934±0.0061 0.972±0.0045 B ⊙ Fig.3. Radialvelocityresidualsof bothcomponents (top: A;bottom: Intheparticularcaseofthissystem,∆V canbeinterpreted B)resultingfromtheorbitalfit.TheHARPSdataarealllocatedafter B 2000.TheolderdataarefromESOCoudéEchelle(Endletal.2001). astheneteffect,forcomponentBonly,ofthedifferentialgrav- itationalredshift,differentialconvectiveblueshiftandtemplate mismatch. Indeed, the template used for componentA is a G2 Thevelocityresidualsagainsttheorbithaveastandarddevi- maskcalibratedagainstasteroids.TheradialvelocitiesofAare ationof 4.56and 3.26m s−1 for A andB respectively(Fig. 3). thereforeasclosetoabsoluteaspossible.ComponentBwasre- Forthe HARPS dataonly,the standarddeviationsare 3.44and ducedusinga K5 mask insteadof K1 (thecommonlyaccepted 2.74ms−1 withthelatterlikelyoverestimatedduetosomeout- spectraltype). liers in 2009 not filtered out by the constraint on the seeing. Those values, especially for B, are consistent with the residu- alsobtainedbyDumusqueetal.(2012)beforetheycorrectedfor -20.0 othereffects(e.g.rotationalactivity,...). 5. Discussion -21.0 Théveninetal. (2002) could not find any asteroseismologic ) m/s model consistent with the masses obtained by Pourbaixetal. (k -22.0 (2002)and,instead,proposed1.100±0.006M⊙and0.907±0.006 y M⊙forαCenAandBrespectively.Theseresultsweresomehow cit confirmedbyKervellaetal.(2003)throughthemeasurementof o el theangulardiameterofbothcomponentsandadoptingthe par- v al -23.0 allax by Söderhjelm (1999). Combining their own results with di thoseofThéveninetal.(2002),theyalsoderivedalikelyparal- Ra laxof745.3±2.5mas. Using asteroseismology only, Lundkvistetal. (2014) ob- -24.0 tained1.10±0.03M and0.97±0.04M ,veryconsistentwith ⊙ ⊙ ourvalues.Theyalsoderived1.22±0.01R and0.88±0.01R ⊙ ⊙ fortheradiusofcomponentAandBrespectively,matchingthe -25.0 valuesobtainedbyKervellaetal. (2003).Adoptingthe angular diametersfromthelatter(8.511±0.020masand6.001±0.034 1993.18 Time 2013.40 masforAandB)andourrevisedparallaxyield1.231±0.0036 R and0.868±0.0052R fortheradiiofAandB,alsoingood ⊙ ⊙ agreementwithLundkvistetal.(2014). Fig.2.RadialvelocitiesofalphaCen(filledforcomponentAandopen forB).DiabolosdenotetheHARPSarchiveddataandsquarestheolder ESOdata(Endletal.2001)alreadyusedbyPourbaixetal.(2002).On 6. Conclusions this portion of the orbit, fitting ∆ V or setting it to 0 is not visually B distinguishable. As stressed by several authors (Torresetal. 2010; Halbwachsetal. 2016), obtaining stellar masses at the 1% AA/2015/27859,page3of4 A&Aproofs:manuscriptno.alphaCen2015 level is crucial for astrophysics. Accounting for ∆V made B it possible to reach that level of precision (and hopefully of accuracyaswell)forαCenwithoutanyad-hocassumptionover asoshorttimescale.Thereviseddistanceandmassesmatchthe valuesindependentlyderivedbyastroseismology. Acknowledgements. Wethankthereferee,XavierDumusque,forhissuggestion about filtering the HARPS dataset according to the seeing. This research has madeuseoftheWashingtonDoubleStarCatalogmaintainedattheU.S.Naval ObservatoryandtheSimbaddatabase,operatingatCDS,Strasbourg,France. References BazotM.,BourguignonS.,Christensen-DalsgaardJ.,2012,MNRAS,427,1847 BergmannC.,EndlM.,HearnshawJ.B.,WittenmyerR.A.,WrightD.J.,2015, InternationalJournalofAstrobiology,14,173 BoyajianT.S.,vonBraunK.,vanBelleG.,etal.,2013,ApJ,771,40 BrunttH.,BeddingT.R.,QuirionP.O.,etal.,2010,MNRAS,405,1907 deMeulenaerP.,CarrierF.,MiglioA.,etal.,2010,A&A,523,A54 DumusqueX.,UdryS.,LovisC.,SantosN.C.,MonteiroM.J.P.F.G.,2011,A&A, 525,A140 DumusqueX.,PepeF.,LovisC.,etal.,Nov.2012,Nature,491,207 DumusqueX.,PepeF.,LovisC.,LathamD.W.,2015,ApJ,808,171 DuquennoyA.,MayorM.,1991,A&A,248,485 EndlM.,KürsterM.,ElsS.,HatzesA.P.,CochranW.D.,2001,A&A,374,675 EndlM.,BergmannC.,HearnshawJ.,etal.,2015,InternationalJournalofAs- trobiology,14,305 ESA,1997,TheHipparcosandTychoCatalogues,ESASP-1200 HalbwachsJ.L.,MayorM.,UdryS.,ArenouF.,2003,A&A,397,159 Halbwachs J.L.,Boffin H.M.J.,Le Bouquin J.B., et al., 2016, MNRAS, 455, 3003 HartkopfW.I.,McAlisterH.A.,MasonB.D.,2001,AJ,122,3480 HatzesA.P.,2013,ApJ,770,133 HeintzW.D.,1982,Observatory,102,42 KalteneggerL.,HaghighipourN.,2013,ApJ,777,165 KervellaP.,ThéveninF.,SégransanD.,etal.,2003,A&A,404,1087 KjeldsenH.,BeddingT.R.,ArentoftT.,etal.,2008,ApJ,682,1370 KuruczR.L.,FurenlidI.,BraultJ.,TestermanL.,1984,Solarfluxatlasfrom296 to1300nm,NationalSolarObservatory Lovis C., Pepe F., Bouchy F., et al., 2006, In: Society of Photo-Optical In- strumentation Engineers(SPIE)ConferenceSeries,vol.6269ofSocietyof Photo-OpticalInstrumentationEngineers(SPIE)ConferenceSeries,0 LundkvistM.,KjeldsenH.,SilvaAguirreV.,2014,A&A,566,A82 MalkovO.Y.,TamazianV.S.,DocoboJ.A.,ChulkovD.A.,2012,A&A,546,A69 MayorM.,PepeF.,QuelozD.,etal.,Dec.2003,TheMessenger,114,20 MolaroP.,MonacoL.,BarbieriM.,ZaggiaS.,2013,TheMessenger,153,22 PortodeMelloG.F.,LyraW.,KellerG.R.,2008,A&A,488,653 PourbaixD.,1998,A&AS,131,377 PourbaixD.,Neuforge-VerheeckeC.,NoelsA.,1999,A&A,344,172 PourbaixD.,NideverD.,McCarthyC.,etal.,2002,A&A,386,280 RaghavanD.,McAlisterH.A.,HenryT.J.,etal.,2010,ApJS,190,1 RajpaulV.,AigrainS.,RobertsS.J.,2015,ArXive-prints SöderhjelmS.,1999,A&A,341,121 ThéveninF.,ProvostJ.,MorelP.,etal.,2002,A&A,392,L9 TorresG.,AndersenJ.,GiménezA.,2010,A&ARev.,18,67 vanLeeuwenF.,2007,Hipparcos,thenewReductionoftheRawdata,Springer WhitworthA.P.,LomaxO.,2015,MNRAS,448,1761 AA/2015/27859,page4of4

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.