Astronomy&Astrophysicsmanuscriptno.alphaCen2015 (cid:13)cESO2016 January8,2016 α ⋆ Parallax and masses of Centauri revisited DimitriPourbaix1,⋆⋆ andHenriM.J.Boffin2 1 Institutd’Astronomieetd’Astrophysique,UniversitéLibredeBruxelles(ULB),Belgium e-mail:[email protected] 2 ESO,AlonsodeCórdova3107Vitacura,Casilla19001Santiago,Chile Received30/11/2015;accepted04/01/2016 6 ABSTRACT 1 0 Context.DespitethethoroughworkofvanLeeuwen(2007),theparallaxofαCentauriisstillfarfrombeingcarvedinstone.Any 2 derivationoftheindividualmassesisthereforeuncertain,ifnotquestionable.Andyet,thatdoesnotpreventthissystemfrombeing usedforcalibrationpurposeinseveralstudies. n Aims.Obtainingmoreaccuratemodel-freeparallaxandindividualmassesofthissystem. a Methods.WithHARPS,theradialvelocitiesarenotonlyprecisebutalsoaccurate.TenyearsofHARPSdataareenoughtoderive J thecomplementofthevisualorbitforafull3DorbitofαCen. 7 Results.WelocateαCen(743mas)rightwhereHipparcos(ESA1997)hadputit,i.e.slightlyfurtherawaythanderivedbySöder- hjelm(1999). Thecomponents arethusabitmoremassive thanpreviously thought (1.13and 0.97M for Aand Brespectively). ⊙ ] Thesevaluesarenowinexcellentagreementwiththelatestasteroseismologicresults. R S Keywords. astrometry–(stars)binaries:spectroscopic–techniques:spectroscopy . h p 1. Introduction componentsofαCen,yieldinganupwardrevisionofthemasses. - o Owingtothespecialinterestoftheasteroseismologycommunity The Sun is a single star and as such is among the minority r for this system, an international team was gathered later on to tof solar-like stars which are mostly within binaries or multi- s obtainsomeaccurateradialvelocitiesofbothcomponents.The aplesystems(Duquennoy&Mayor1991;Halbwachsetal.2003; outcomewas a set precise radialvelocitieswhich were used to [Raghavanetal. 2010; Whitworth&Lomax 2015). Our closest quantify the relative convective blue shift of both components, neighbour– the system comprisingα Centauri A, B and Prox- 1 assuming the individual masses and the parallax of the system ima Centauri – is therefore more representative. α Centauri A v (Pourbaixetal.2002). and B (HIP 71683/1), with spectral types G2V and K1V, are 6 Even if it turned out to be a false detection (Hatzes 2013; 3in a binary system with an orbital period close to 79.91 years Rajpauletal. 2015), the announcementof a planetarycompan- 6(Heintz1982;Pourbaixetal.1999;Torresetal.2010)andadis- ion around α Cen B (Dumusqueetal. 2012) suddenly resur- 1tance of 1.35 pc. The A and B pair offers a unique possibil- rected the interest of the planet hunters for that stellar system 0ity to study stellar physics in stars that are only slightly dif- (Kaltenegger&Haghighipour 2013). We therefore decided to .ferent from our own Sun. Their masses – 1.1 and 0.9 Msun 1 determine for the first time, in a self-consistent manner, the 0– nicely bracket that of our neighbour star, and they are only individual masses, the parallax, and the net shift caused by 6slightlyolderthantheSun.Thus,αCenisanideallaboratoryfor gravitation and convection, using an extensive set of homoge- 1stellar evolution (e.g.Kervellaetal. 2003; PortodeMelloetal. neousandaccurateradialvelocitiesofbothcomponentsfromthe :2008; Brunttetal. 2010; Bazotetal. 2012), asteroseismology v ESOHARPSsciencearchive.Theobservationsaredescribedin (Kjeldsenetal. 2008;deMeulenaeretal. 2010) andextra-solar i Sect.2whiletheadoptedmodelusedtofitthemisdescribedin Xplanet searches (Dumusqueetal. 2012; Rajpauletal. 2015; Sect.3.ResultsarelistedinSect.4anddiscussedinthecontext rBergmannetal.2015;Endletal.2015).Assuchitiscrucialto ofasteroseismologyinSect.5. adetermine with the highest accuracy the properties of the two starsinαCen,whichcanbedoneasdouble-linedspectroscopic visualbinaries,thusofferingahypothesis-freedeterminationof 2. Observationaldata the distance and individual masses (Pourbaix 1998). One also needs to have the most precise orbital elements to disentan- α Cen has been the target of many radial velocities (RV) mea- gle any other effects, such as oscillations or the presence of a surements,especially, with HARPS, the High AccuracyRadial planetary-masscompanion. velocity Planet Searcher at the ESO La Silla 3.6m telescope. Pourbaixetal. (1999) presented the first simultaneous ad- ThevacuumandthermallyisolatedHARPSinstrumenthasbeen justment of the relative positions and radial velocities of both especiallydesignedforhigh-precisionradialvelocitiesobserva- tions(Mayoretal. 2003), reachingfor examplea dispersionof ⋆ Based on data obtained from the ESO Science Archive Faci- 0.64ms−1over500days(Lovisetal.2006). lityunderrequestnumbersHBOFFIN/190700,Pourbaix/192287,Pour- baix/192364, Pourbaix/192404, Pourbaix/192552, Pourbaix/192630, The velocitiesof bothcomponentsof α Cen were retrieved andPourbaix/199124. fromtheHARPSarchivemaintainedbyESO:2015velocitiesfor ⋆⋆ SeniorResearchAssociate,F.R.S.-FNRS,Belgium Aand4303forB.Despitethepossibilityofselectingthetarget AA/2015/27859,page1of4 A&Aproofs:manuscriptno.alphaCen2015 ontheESOarchiveinterface,avisualinspectionwasnecessary 3. Model toassignthevelocitiestotherightcomponent.Furtherimposing The model used by Pourbaixetal. (1999) assumes that the that the seeing does not exceed 1 arcsec so as to avoid α Cen measured radial velocities represent the radial velocities of the A contaminating α Cen B and vice versa (as suggested by the barycentreofeachcomponent: referee, Xavier Dumusque), limited these observations to 710 and1951forAandBrespectively.Theimportanceofthisdata V =V −K (ecosω +cos(ω +v)), A 0 A B B (1) set lies in the simultaneousor quasi simultaneousobservations V =V +K (ecosω +cos(ω +v)), B 0 B B B ofbothcomponentswithaninstrumentthatprovidesRVsonan whereV denotesthesystemicvelocity,ω theargumentofthe almostabsolutescale. 0 B periastronofcomponentB,etheeccentricity,vthetrueanomaly, WeusedtheradialvelocitiesprovidedbytheHARPSpipe- andK arethesemi-amplitudesoftheradialvelocitiesofboth line. For α Cen A, the RV is obtained by cross-correlating the A,B components. spectrawithaG2VfluxtemplatewhichistheFouriertransform Whereas thatassumption was realistic in the past when the spectrometer (FTS) spectrum of the Sun (Kuruczetal. 1984), radialvelocities were precise to a few hundredmeters per sec- andcalibratedsoastohaveanoffsetinthezero-pointof102.5 m s−1 (Molaroetal. 2013). For α Cen B, the cross-correlation ond,some effects popup as soon as the precisionimproves.In order to recover the accuracy of the barycentre velocity, these wasdonewithaK5template.Themedianofthevelocitypreci- sionforAandBarerespectively0.16and0.12ms−1(Fig.1). effects have to be corrected for, either individually or globally. Withrelativeradialvelocitiesofbothcomponents,theseeffects wouldhavetobemodelled.WithHARPSmeasuringbothcom- ponentsinthesamereferenceframe,itispossibletomeasurethe correctiontobeappliedglobally. Assumingthegravitationalredshiftandconvectiveblueshift ofagivencomponentdonotchangeoverthespectroscopicob- servationbaseline,theneteffectofthetwoshiftsisjustavertical translation of the radial velocity curve (the dates of the mini- mumsandmaximumsofthecurveremainunchanged).Nomor- phologicalchangeofthecurveitselfisanticipated.Theneteffect ofthefourshiftsis thereforea verticaltranslationof onecurve withrespecttotheother. Suchaverticaltranslationcaneasilybemodelledwithanad- ditionaltermin,say,theradialvelocityofcomponentB(Eq.1): V =V +K (ecosω +cos(ω +v))+∆V . (2) B 0 B B B B Itisworthpointingthat,whereasPourbaix(1998)advocatedfor asimultaneousadjustmentofthevisualandspectroscopicdata, this∆V termhastobeintroducedbecausethesolutionsforV B A and V are obtained simultaneously! Indeed, if the two curves B weremodelledindependently,twodistinctV wouldbeobtained 0 but K and K wouldrepresentthe semi-amplitudesofthe two A B curves. Without ∆V , the simultaneousfit introducesa bias on B V ,K ,andK . 0 A B Theorbitofthestellarsystembeingouronlygoal,noshort timescalevariation(Dumusqueetal.2011,2015)ismodelledin Fig. 1. Distribution of the estimated radial velocity uncertainties re- thepresentinvestigation. portedbytheHARPSpipelineforcomponentA(left)andB(right). 4. Results The HARPS data cover 11 years only (13% of the orbital period),but at the crucialtime when the radial velocitiescross Despite the absence of visual departure between the fit of the (seeFig.2).TheHARPSdatawerecompletedwithsomeolder presentdataset with and without ∆ V , the parallaxes differ by B ESO data (Endletal. 2001), obtained with the Coudé Echelle 2%(smallerwithoutshift),directlyimpactingthetotalmassby Spectrograph(CES)atthe1.4-mCoudéAuxiliaryTelescopeand thesame amountasthe fractionalmassremainsessentially un- later,atthe3.6-mtelescope,bothinLaSilla,toextendthebase- changed.Thereducedχ2increasesfrom1.01to1.21withoutthe line and to help improvingthe precision of the fractionalmass shift.Therevisionofthemodelisthusjustified.Theorbitalele- (κ= M /(M +M )).Thesevelocitiesbeingrelative,thedatasets mentsaregiveninTab.1togetherwiththe2002resultsandthe B A B ofAandBwereshiftedtosharetheHARPSzeropoint. orbitisplottedinFig.2. These very accurate radial velocities were complemented Therevisedorbitalparallax(743±1.3mas)issmallerthan with the same visual observations (both micrometric and pho- thevaluederivedbySöderhjelm(1999)fromtheHipparcosob- tographic)asusedinourpreviousinvestigation(Pourbaixetal. servationsandadoptedbyPourbaixetal.(2002).Itissomewhat 1999).Accordingtoitswebportal,theWashingtondoublestar closer to the original Hipparcos value, 742 ± 1.42 mas (ESA catalogue (Hartkopfetal. 2001) holds 37 additional visual ob- 1997), and rules out the result obtained in the revision of the servations(upto2014.241)withrespecttoouroriginalinvesti- Hipparcoscatalogue(vanLeeuwen2007)wherethe parallaxis gation.ThesedatawerekindlyprovidedbytheWDSteamand 754.81±4.11mas.Eventhoughtheparallaxisdifferent,theto- addedtothe1999datasetforthesakeofcompleteness.Inprac- talmassofthesystemperfectlymatchesthe’photometric’esti- tice,noparameterfromthevisualorbitwasaffected. mate from Malkovetal. (2012), thus indicating some possible AA/2015/27859,page2of4 DimitriPourbaixandHenriM.J.Boffin:ParallaxandmassesofαCentaurirevisited flaw in their mass-luminosity relation. Our value of the mass of component B seems to favour the asteroseismology-based 0.97± 0.04 M by Lundkvistetal. (2014) over the 0.921 M ⊙ ⊙ basedonisochroneinterpolation(Boyajianetal.2013). Table 1. Orbital solutions from Pourbaixetal. (2002), this work us- ingHARPSandsomeolderESOCoudéEchellevelocities(Endletal. 2001). HARPS+ESO Element Original CoudéEchelle a(′′) 17.57±0.022 17.66±0.026 i(◦) 79.20±0.041 79.32±0.044 ω(◦) 231.65±0.076 232.3±0.11 Ω(◦) 204.85±0.084 204.75±0.087 e 0.5179±0.00076 0.524±0.0011 P(yr) 79.91±0.011 79.91±0.013 T (Julianyear) 1875.66±0.012 1955.66±0.014 V (kms) −22.445±0.0021 −22.390±0.0042 0 ̟(mas) 747.1±1.2(adopted) 743±1.3 κ 0.4581±0.00098 0.4617±0.00044 ∆V (m/s) 0.0(adopted) 329±9.0 B M (M ) 1.105±0.0070 1.133±0.0050 A ⊙ M (M ) 0.934±0.0061 0.972±0.0045 B ⊙ Fig.3. Radialvelocityresidualsof bothcomponents (top: A;bottom: Intheparticularcaseofthissystem,∆V canbeinterpreted B)resultingfromtheorbitalfit.TheHARPSdataarealllocatedafter B 2000.TheolderdataarefromESOCoudéEchelle(Endletal.2001). astheneteffect,forcomponentBonly,ofthedifferentialgrav- itationalredshift,differentialconvectiveblueshiftandtemplate mismatch. Indeed, the template used for componentA is a G2 Thevelocityresidualsagainsttheorbithaveastandarddevi- maskcalibratedagainstasteroids.TheradialvelocitiesofAare ationof 4.56and 3.26m s−1 for A andB respectively(Fig. 3). thereforeasclosetoabsoluteaspossible.ComponentBwasre- Forthe HARPS dataonly,the standarddeviationsare 3.44and ducedusinga K5 mask insteadof K1 (thecommonlyaccepted 2.74ms−1 withthelatterlikelyoverestimatedduetosomeout- spectraltype). liers in 2009 not filtered out by the constraint on the seeing. Those values, especially for B, are consistent with the residu- alsobtainedbyDumusqueetal.(2012)beforetheycorrectedfor -20.0 othereffects(e.g.rotationalactivity,...). 5. Discussion -21.0 Théveninetal. (2002) could not find any asteroseismologic ) m/s model consistent with the masses obtained by Pourbaixetal. (k -22.0 (2002)and,instead,proposed1.100±0.006M⊙and0.907±0.006 y M⊙forαCenAandBrespectively.Theseresultsweresomehow cit confirmedbyKervellaetal.(2003)throughthemeasurementof o el theangulardiameterofbothcomponentsandadoptingthe par- v al -23.0 allax by Söderhjelm (1999). Combining their own results with di thoseofThéveninetal.(2002),theyalsoderivedalikelyparal- Ra laxof745.3±2.5mas. Using asteroseismology only, Lundkvistetal. (2014) ob- -24.0 tained1.10±0.03M and0.97±0.04M ,veryconsistentwith ⊙ ⊙ ourvalues.Theyalsoderived1.22±0.01R and0.88±0.01R ⊙ ⊙ fortheradiusofcomponentAandBrespectively,matchingthe -25.0 valuesobtainedbyKervellaetal. (2003).Adoptingthe angular diametersfromthelatter(8.511±0.020masand6.001±0.034 1993.18 Time 2013.40 masforAandB)andourrevisedparallaxyield1.231±0.0036 R and0.868±0.0052R fortheradiiofAandB,alsoingood ⊙ ⊙ agreementwithLundkvistetal.(2014). Fig.2.RadialvelocitiesofalphaCen(filledforcomponentAandopen forB).DiabolosdenotetheHARPSarchiveddataandsquarestheolder ESOdata(Endletal.2001)alreadyusedbyPourbaixetal.(2002).On 6. Conclusions this portion of the orbit, fitting ∆ V or setting it to 0 is not visually B distinguishable. As stressed by several authors (Torresetal. 2010; Halbwachsetal. 2016), obtaining stellar masses at the 1% AA/2015/27859,page3of4 A&Aproofs:manuscriptno.alphaCen2015 level is crucial for astrophysics. Accounting for ∆V made B it possible to reach that level of precision (and hopefully of accuracyaswell)forαCenwithoutanyad-hocassumptionover asoshorttimescale.Thereviseddistanceandmassesmatchthe valuesindependentlyderivedbyastroseismology. Acknowledgements. Wethankthereferee,XavierDumusque,forhissuggestion about filtering the HARPS dataset according to the seeing. This research has madeuseoftheWashingtonDoubleStarCatalogmaintainedattheU.S.Naval ObservatoryandtheSimbaddatabase,operatingatCDS,Strasbourg,France. References BazotM.,BourguignonS.,Christensen-DalsgaardJ.,2012,MNRAS,427,1847 BergmannC.,EndlM.,HearnshawJ.B.,WittenmyerR.A.,WrightD.J.,2015, InternationalJournalofAstrobiology,14,173 BoyajianT.S.,vonBraunK.,vanBelleG.,etal.,2013,ApJ,771,40 BrunttH.,BeddingT.R.,QuirionP.O.,etal.,2010,MNRAS,405,1907 deMeulenaerP.,CarrierF.,MiglioA.,etal.,2010,A&A,523,A54 DumusqueX.,UdryS.,LovisC.,SantosN.C.,MonteiroM.J.P.F.G.,2011,A&A, 525,A140 DumusqueX.,PepeF.,LovisC.,etal.,Nov.2012,Nature,491,207 DumusqueX.,PepeF.,LovisC.,LathamD.W.,2015,ApJ,808,171 DuquennoyA.,MayorM.,1991,A&A,248,485 EndlM.,KürsterM.,ElsS.,HatzesA.P.,CochranW.D.,2001,A&A,374,675 EndlM.,BergmannC.,HearnshawJ.,etal.,2015,InternationalJournalofAs- trobiology,14,305 ESA,1997,TheHipparcosandTychoCatalogues,ESASP-1200 HalbwachsJ.L.,MayorM.,UdryS.,ArenouF.,2003,A&A,397,159 Halbwachs J.L.,Boffin H.M.J.,Le Bouquin J.B., et al., 2016, MNRAS, 455, 3003 HartkopfW.I.,McAlisterH.A.,MasonB.D.,2001,AJ,122,3480 HatzesA.P.,2013,ApJ,770,133 HeintzW.D.,1982,Observatory,102,42 KalteneggerL.,HaghighipourN.,2013,ApJ,777,165 KervellaP.,ThéveninF.,SégransanD.,etal.,2003,A&A,404,1087 KjeldsenH.,BeddingT.R.,ArentoftT.,etal.,2008,ApJ,682,1370 KuruczR.L.,FurenlidI.,BraultJ.,TestermanL.,1984,Solarfluxatlasfrom296 to1300nm,NationalSolarObservatory Lovis C., Pepe F., Bouchy F., et al., 2006, In: Society of Photo-Optical In- strumentation Engineers(SPIE)ConferenceSeries,vol.6269ofSocietyof Photo-OpticalInstrumentationEngineers(SPIE)ConferenceSeries,0 LundkvistM.,KjeldsenH.,SilvaAguirreV.,2014,A&A,566,A82 MalkovO.Y.,TamazianV.S.,DocoboJ.A.,ChulkovD.A.,2012,A&A,546,A69 MayorM.,PepeF.,QuelozD.,etal.,Dec.2003,TheMessenger,114,20 MolaroP.,MonacoL.,BarbieriM.,ZaggiaS.,2013,TheMessenger,153,22 PortodeMelloG.F.,LyraW.,KellerG.R.,2008,A&A,488,653 PourbaixD.,1998,A&AS,131,377 PourbaixD.,Neuforge-VerheeckeC.,NoelsA.,1999,A&A,344,172 PourbaixD.,NideverD.,McCarthyC.,etal.,2002,A&A,386,280 RaghavanD.,McAlisterH.A.,HenryT.J.,etal.,2010,ApJS,190,1 RajpaulV.,AigrainS.,RobertsS.J.,2015,ArXive-prints SöderhjelmS.,1999,A&A,341,121 ThéveninF.,ProvostJ.,MorelP.,etal.,2002,A&A,392,L9 TorresG.,AndersenJ.,GiménezA.,2010,A&ARev.,18,67 vanLeeuwenF.,2007,Hipparcos,thenewReductionoftheRawdata,Springer WhitworthA.P.,LomaxO.,2015,MNRAS,448,1761 AA/2015/27859,page4of4