Helmut Hasse On the Class Number of Abelian Number Fields Extended with Tables by Ken-ichi Yoshino and Mikihito Hirabayashi On the Class Number of Abelian Number Fields Helmut Hasse On the Class Number of Abelian Number Fields Extended with Tables by Ken-ichi Yoshino and Mikihito Hirabayashi 123 HelmutHasse Hamburg,Germany Translatedby MikihitoHirabayashi KanazawaInstituteofTechnology Ishikawa,Japan ThebookisatranslationoftheGermanedition-twochaptersareaddedasreprints. ISBN978-3-030-01510-7 ISBN978-3-030-01512-1 (eBook) https://doi.org/10.1007/978-3-030-01512-1 LibraryofCongressControlNumber:2018961405 MathematicsSubjectClassification(2010):11-XX,11Rxx,11R37,11R29,12-XX PartIIChapter4reprintedwithkindpermissionofKanazawaMedicalUniversityfrom:Ken-ichiYoshino andMikihito Hirabayashi, OntheRelative Class Numberofthe Imaginary Abelian NumberField I, MemoirsoftheCollegeofLiberalArts,Vol.9,December,p.5–53,©Kanazawa MedicalUniversity 1981. PartIIChapter5reprintedwithkindpermissionofKanazawaMedicalUniversityfrom:Ken-ichiYoshino andMikihitoHirabayashi, OntheRelative ClassNumberoftheImaginaryAbelianNumberFieldII, MemoirsoftheCollegeofLiberalArts,Vol.10,December,p.33–81,© KanazawaMedicalUniversity 1982.Correctedprinting2015 EnglishtranslationoftheGermanreprintpublishedbySpringer-VerlagBerlin,Heidelberg,1985 ©SpringerNatureSwitzerlandAG1952,1985,2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Foreword JacquesMartinethas sketchedthe developmentof the main ideasin the theoryof cyclotomicfieldsfromthepublicationofHasse’smonographuptotheheydaysof Iwasawatheory(forapolishedproofoftheMainConjecture,see,e.g.,thebeautiful book [10]). The notorious conjectures (Vandiver, Greenberg) are still open, and progresshasshiftedsomewhatto the non-abelianside.Thisnoteis devotedto the algorithmicpartofthetheoryofcyclotomicfields. As Hasse explainedin his preface, he was not content with the state of the art in the theory of cyclotomic fields: Hilbert had erected a magnificent building of algebraic number theory, which had been crowned by Takagi’s class field theory. On the other hand, the computation of the main invariants of number fields, such asthe unitgroupand the class number,was notfeasibleexceptfor fieldsof small degreeandverysmalldiscriminant.InHasse’sopinion,itwasunsatisfactorytohave suchagreattoolastheanalyticclassnumberformulawhilehavingtoadmitthatit wasprettyuselessforactuallycomputingclassnumbers. Hasse’sgoalwastoinvestigatetheclassnumberformulafromanarithmeticpoint − ofview;evenshowingthatthenumberh providedbytheclassnumberformulais anintegerisquitenon-trivial.Hethenshowedthattheclassnumberformulamaybe usedforcomputingtherelativeclassnumbersofallcyclotomicfieldsofconductor ≤100. Hasse’smonographservedasablueprintforthecorrespondingbookonabelian extensions of complex quadratic number fields by Curt Meyer [45]. The whole situationinthiscaseismuchmorecomplicated,andMeyer’sbookisalotharderto readthanHasse’s. Whatis missing arethe manytablesthatHasse providedin his bookandinparticularthebeautifuldiagramsofthesubfieldsinvolved. Class NumberFormulas The statement that the analytic class number formula for quadratic number fields was first proved by Dirichlet must be taken with a grain of salt, since Dirichlet v vi Foreword worked with binary quadratic forms. This fact makes t√ranslating his result on the classnumberformulaforDirichletnumberfieldsQ(i, m) (or,ashewouldhave said, for binary quadratic forms with complex coefficients and determinant m) a highly non-trivial task, since his class groups of forms correspond to certain ring classgroupsinthemodernsense.Thegeneralizationsofhisclassnumberformula tomoregeneralbiquadraticnumberfieldsprovidedbyEisenstein[15],Bachmann [5] and Amberg[1] are so difficultto translate into the languageof numberfields that it is hard to say whether their results are corrector not (Hasse alludesto this stateofaffairsinhisIntroduction). Hilbert [27] and Herglotz [26] proved these results in the language of number fields,andthemostprofoundstudyoftheclass numberformulainmultiquadratic numberfieldsisthelittle-knownthesisbyVärmon[66],whichcontainsmostofthe resultsthatwerelaterrediscoveredindependentlybyotherauthors. Computation ofClass Numbers AlreadyGausshadcomputedextendedtablesofclassnumbersofbinaryquadratic forms,butheusedhistheoryofcomposition,amethodthatissuperiortotheclass numberformulaforcomputationsbyhand.EvenafterDirichlet’sproofoftheclass numberformulain the quadraticcase, the theoryof quadraticformsremainedthe favouritecomputationaltool. Similar techniques were not available when Kummer started investigating the class groups of cyclotomic fields. He proved that the class number h of the field K = Q(ζ ) of p-th roots of unity admits a factorization h = h+h−, where h+ p p p p p is the class numberof the maximalreal subfield K+ = Q(ζ +ζ−1), and where p p h− is an integerthat can be computedexplicitly.The relative class numberh− = p p + h(K)/h(K )isnumericallyaccessible,andtheplusclassnumberisessentiallythe indexofthegroupofcyclotomicunitsinsidethefullunitgroup. UsingthetechniquesprovidedbyKummer,C.G.Reuschle[55](1812–1875),a teacherattheGymnasiuminStuttgart,computedgeneratorsoftheprincipalideals ofsmallnormsincyclotomicnumberfieldsQ(ζ )forallprimevaluesm<100as m wellasforseveralcompositevaluesofm ≤ 120.Reuschle’scorrespondencewith KummerwaspublishedbyFolkertsandNeumann[17]. After the publication of Hasse’s book, Schrutka von Rechtenstamm [61] pub- lished extensive tables of relative class numbers of cyclotomic fields in 1964. D.H. Lehmer [36] computed many minus class numbers of cyclotomic fields; his resultswereextendedconsiderablyin[18].YoshinoandHirabayashi[69]expanded Hasse’s tables, including the diagramsfor the subfields (see Part II of the present translation). + The first calculations of h in some non-trivial cases were done by van der m Linden[39],whousedOdlyzko’sboundsforcomputingh+forallprimesp≤163 p (insomecases,hehadtoassumeGRH). Foreword vii GreatadvancesweremadebyR.Schoof[59](seealso[33]and[22]),whowas able to determine factors of class numbers of real cyclotomic fields, which very likelycoincidewiththeactualclassnumbers. Stéphane Louboutin has written a wealth of articles on the computation of relative class numbers of CM fields using analytic means and has used these techniques for classifying abelian (and non-abelian) CM fields with small class numbers;see,e.g.,[40]. Class numbers of cyclotomic fields showed up in investigations of Catalan’s equationxm−yn = 1.Itisnotdifficulttoreducethestatementthatthisequation doesnothaveanynon-trivialsolutionstothecasexp−yq =1,wherepandq are distinctoddprimenumbers.Itcanbeshown(see[7,46])thatifthisequationhasa non-trivialsolution,thenp |h−andq |h−.Theconjecturethattheonlynon-trivial q p solution of the Catalan equation in natural numbersis 32 −23 = 1 was obtained by P. Mihailescu using Stickelberger’stheorem (see [6, 60] for expositions of the proof). For an overview on the determination of class numbers using the p-adic class numberformula,seetherecentthesisbyZhang[70]. Parityof Class Numbers Hasse proved in Theorem 3.45 that the class number of Q(ζ ) is odd if and only n if h− is odd. The conjecture that h− is odd if p and q = p−1 are both prime n p 2 emerged in the work of Davis [13] and Estes [14]. This conjecture was proved if 2isaprimitiverootmoduloq byEstes;seeStevenhagen[63]forageneralization and other useful references.Gras [21] provedan importantduality result between groupsoftotallypositiveandprimarycyclotomicunits;adifferentproofbasedon theMainConjecturewasgivenrecentlybyIchimura[30].Yoshino[68]provedthat the class numberof Q(ζ ) is even if n (cid:4)≡ 2mod4 is divisible by 4 distinct prime n factors. For the state of the art concerning the parity of plus class numbers, and the determination of the 2-class group of real abelian fields, see the recent thesis by Verhoek[67]. Structure ofClass Groups Already Kummer [34] investigated the structure of some minus class groups of cyclotomicfieldsbystudyingtheactionoftheGaloisgrouponclassgroups;inthis way,hewasabletoshowthattheminusclassgroupofQ(ζ ),whichhasorder8, 29 iselementaryabelian.Subsequently,Kummer’smethodswererefinedbyTateyama [64],HorieandOgura[29]andmanyotherauthors. viii Foreword Kummer’s result that p | h+ implies that p | h− was provedalgebraically by p p Hecke [24], who proved that the p-rank e− of the minus part of Cl (Q(ζ )) and p p thecorrespondingranke+ofthepluspartsatisfye− ≥e+.Generalizingresul√tsby Arnold√Scholz[57],whocomparedthe3-ranksoftheidealclassgroupsofQ( m) andQ( −3m),Leopoldt[38]obtainedstrongboundsbetweenindividualpiecesof theplusandtheminusclassgroupsofcyclotomicfields. Class Number1 Problems Kummerconjecturedin1851thattheminusclassnumberh− ofQ(ζ ),wherepis p p prime,isasymptoticallyequalto p+3 G(p)= p 4 . p−3 p−1 2 2 π 2 AnkenyandChowlacouldprovethat − h log p =o(logp), G(p) whichimpliesthath− =1foronlyfinitelymanyprimesnumbersp.Granville[20] p showedthatKummer’sconjecturesarenotcompatiblewithconjecturesinanalytic numbertheorythatarebelievedtobetrue. Masley [41] (see also [42]) determined all cyclotomic fields Q(ζ ) with class m number 1 and found that all of them satisfy m ≤ 84. A useful result in this connectionwasprovedbyHorie[28]:ifK ⊆Larecomplexabeliannumberfields, thenh− |4h−;thiswasgeneralizedtoarbitraryCMfieldsbyOkazaki[52]. K L Inthisbook,HassediscussesWeber’sresultthattheclassnumbersofthefields L of2n+2-throotsofunityarealloddinSect.3.16.HarveyCohn[12]pointedout n thatthemaximalreal√subfieldsKn ofLn(cid:2)seem√tohaveclassnumber1.Thisiseasy toproveforK =Q( 2)andK =Q( 2+ 2),anditfollowsfromReuschle’s 1 2 tablesthath(K )=1.CohnprovedthatthefieldsK eitherhaveclassnumber=1 3 n or≥ 257.He addsthe remark,“We stillhaveobtainednoevidencetodoubt”that theclassnumbersofthefieldsK arealltrivial. n Fukuda and Komatsu [19] improved Cohn’s result and showed that the class numbersh(K ) are notdivisible by any prime number< 109. Bauer and van der n Lindenshowedthath(K ) = h(K ) = 1;Miller [47,48]provedthath(K ) = 1 4 5 6 and,assumingGRH, thath(K ) = 1.Inaddition,heconjecturesthatallsubfields 7 K ofthecyclotomicp-extensionsforanyprimepandanynhaveclassnumber1. p,n Buhler,PomeranceandRobertson[8]haveshownthattheCohen–Lenstraheuristics predict that h+(pn) = h+(p) for almost all primes p and all integers n, where h+(pn)istheclassnumberofthemaximalrealsubfieldofthefieldofpn-throots Foreword ix of unity, and they remark, “It is possible that there are no exceptional primes” p atall. HilbertClass Fields The fields Q(ζp) with p ≤ 19 have class number 1,√and L = Q(ζ23) has class number3comingfromthequadraticsubfieldK =Q( −23).Inparticular,weget the Hilbertclass fields of L and K by adjoininga rootof the polynomialf(x) = x3−x+1withdiscriminant−23. In a similar way, we can constructunramified cubic extensionsfor many other cyclotomic fields. The smallest example of a quadratic number field with class number5wastreatedbyHasse[23].Nowadays,suchcalculationscanbeperformed routinelyusingthemethodsdescribedinHenriCohen’sbook[11]. A few other known examples of unramified abelian extensions of cyclotomic fieldsaregivenbythefollowingtable. (cid:4) h f |discF| 47 5 x5−2x4+2x3−x2+1 472 79 5 x5−2x4+3x2−2x+1 792 71 7 x7−2x6+2x5+x3−3x2+x−1 713 29 8 x8−4x7+8x6−6x5+2x4+6x3−3x2+x+3 296 31 9 x9−x7−2x6+3x5+x4+2x3−x2+x−3 316 The field F of degree 17 whose compositum with K = Q(ζ ) is the Hilbert 64 classfieldofK wascomputedbyNoamElkies[16]:F isgeneratedbyarootofthe polynomial f(x)=x17−2x16+8x13+16x12−16x11+64x9−32x8 −80x7+32x6+40x5+80x4+16x3−128x2−2x+68 andhasdiscriminant|discF|=279. Familiesofunramifiedextensionsofcyclotomicnumberfieldswereconstructed byArnoldScholz([58];seealso[37]).AninvestigationofMetsänkylä’sresults[44] onprimefactorsof theminusclassnumberofcyclotomicfieldsfroma classfield theoreticalpointofviewmightbearewardingproject. Themaininvestigationofunramifiedabelianextensionsofcyclotomicfieldswas doneinconnectionwithp-classgroupsofQ(ζ ).Kummerhadalreadyshownthat p thesep-classgroupsaregovernedbythedivisibilityofBernoullinumbersbyp,and someof hisresultsmaybeinterpretedasan explicitconstructionofp-class fields ofQ(ζ ). p ThepreciseconnectionbetweenthedivisibilityofBernoullinumbersandcertain piecesofthep-classgroupofQ(ζ )wasinvestigatedbyPollaczek[53],Morishima p x Foreword [50,51]andVandiver[65],buttheclearestexpositionandthemostcompleteresults concerningthiscorrespondenceweregivenbyHerbrand[25].ForK = Q(ζ ),set p G=Gal(K/Q),A=Cl(K)/Cl(K)p andσ (ζ)=ζa.Let a A ={c∈A:σ (c)=cai forallσ ∈G}. i a a ThenA isthepartofAfixedbytheGaloisgroup,andwehave 0 A=A0⊕A1⊕···⊕Ap−2. It is easy to see that A = A = 0. Herbrand proved that if A (cid:4)= 0 for some 0 1 i oddindexi, then p | Bp−i, which refinesKummer’sresultthatif p | h−p, then p divides some Bernoulli number. Since the plus part of the class group is the sum of the A with even index, Vandiver’s conjecture states that A = 0 for all even k k 0 ≤ k ≤ p − 3. Herbrand proved that if p | Bp−i, then Ai (cid:4)= 0 if Vandiver’s conjectureholds,andRibet[56](seealsoMazur’sbeautifulsurvey[43])succeeded ineliminatingVandiver’sconjectureusingmodularforms. Inrecentyears,itwasdiscoveredhowtousealgebraicK-theorytoproveresults abouttheAi.Kurihara[35]wasabletoshowthatAp−3 =0,andSoulé[62]showed thatAp−n =0foroddvaluesofnsatisfyinglogp>n224n4. The triviality of certain pieces of A is also related to a conjecture of Ankeny, √ Artin and Chowla [2–4], according to which the fundamentalunit ε = t +u p forprimesp ≡ 1mod4satisfiesp (cid:2) u.Kiselev[31],Carlitz[9]andMordell[49] proved independentlythat this is equivalentto p (cid:2) B(p−1)/2. This conjecture was verifiedforallprimesp <2·1011in[54]. Forasurveyonthefascinatingconnectionsbetweenvaluesofzetafunctionsand algebraicK-theory,seeKolster[32]. Jagstzell,Germany FranzLemmermeyer References 1. E.J. Amberg, Über den Körper, dessen Zahlen sich rational aus zwei Quadratwurzelnzusammensetzen.Diss.Zürich1897 2. N.C.Ankeny,E.Artin,S.Chowla,Theclass-numberofrealquadraticnumber fields.Ann.Math.56,479–493(1952) 3. N.C. Ankeny,S. Chowla,A noteon the class numberofrealquadraticfields. ActaArith.6,145–147(1960) 4. N.C.Ankeny,S.Chowla,Afurthernoteontheclassnumberofrealquadratic fields.ActaArith.7,271–272(1962) 5. P. Bachmann,Zur Theorieder complexenZahlen.J. Reine Angew.Math.67, 200–204(1867)
Description: