0 NNLO predictions for event shapes and jet rates in 1 0 2 electron-positron annihilation n a J 8 ] h p - Stefan Weinzierl∗ p e UniversityofMainz h E-mail: [email protected] [ 1 v Thestrongcouplingconstantisafundamentalparameterofnature. Itcanbeextractedfromex- 1 perimentsmeasuringthree-jeteventsinelectron-positronannihilation.Forthisextractionprecise 8 2 theoreticalcalculations for jet rates and eventshapes are needed. In this talk I will discuss the 1 NNLOcalculationfortheseobservables. . 1 0 0 1 : v i X r a RADCOR2009-9thInternationalSymposiumonRadiativeCorrections(ApplicationsofQuantumField TheorytoPhenomenology) October25-302009 Ascona,Switzerland ∗Speaker. (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ NNLOpredictionsforeventshapesandjetratesinelectron-positronannihilation StefanWeinzierl 1. The calculation Theprocesse+e−→3jetsisofparticularinterestforthemeasurementofthestrongcoupling a . Three-jeteventsarewellsuitedforthistaskbecausetheleadingterminaperturbative calcula- s tionofthree-jetobservables isalreadyproportional tothestrongcoupling. Forapreciseextraction of the strong coupling one needs in addition to a precise measurement of three-jet observables in the experiment a precise prediction for this process from theory. This implies the calculation of higher order corrections. Theprocess e+e− →3jets has been been calculated recently at next-to- next-to-leading order(NNLO)inQCD[1,2]. Themasterformulaforthecalculation ofathree-jet observable atanelectron-positron collider is hOi = 1 (cid:229) df O (p ,...,p ,q ,q ) (cid:229) |A |2, (1.1) 8s Z n n 1 n 1 2 n n≥3 helicity where q and q are the momenta of the initial-state particles and 1/(8s) corresponds to the flux 1 2 factorandtheaverageoverthespinsoftheinitialstateparticles. Theobservable hastobeinfrared safe,inparticular thisimpliesthatinsingleanddoubleunresolved limitswemusthave O (p ,...,p ,q ,q ) → O (p′,...,p′,q ,q ) forsingleunresolved limits, 4 1 4 1 2 3 1 3 1 2 O (p ,...,p ,q ,q ) → O (p′,...,p′,q ,q ) fordoubleunresolved limits. (1.2) 5 1 5 1 2 3 1 3 1 2 A is the amplitude with n final-state partons. At NNLO we need the following perturbative ex- n pansions oftheamplitudes: |A |2= A(0) 2+2Re A(0)∗A(1) +2Re A(0)∗A(2) + A(1) 2, 3 3 3 3 3 3 3 (cid:12) (cid:12) (cid:16) (cid:17) (cid:16) (cid:17) (cid:12) (cid:12) |A |2=(cid:12)(cid:12)A(0)(cid:12)(cid:12)2+2Re A(0)∗A(1) , (cid:12)(cid:12) (cid:12)(cid:12) 4 4 4 4 (cid:12) (cid:12) (cid:16) (cid:17) (cid:12) (cid:12)2 |A |2=(cid:12)A(0)(cid:12) . (1.3) 5 5 (cid:12) (cid:12) (cid:12) (cid:12) HereA(l) denotesan(cid:12)amplit(cid:12)udewithnfinal-statepartonsandlloops. Wecanrewritesymbolically n theLO,NLOandNNLOcontribution as hOiLO = O ds (0), Z 3 3 hOiNLO = O ds (0)+ O ds (1), Z 4 4 Z 3 3 hOiNNLO = O ds (0)+ O ds (1)+ O ds (2). (1.4) Z 5 5 Z 4 4 Z 3 3 ThecomputationoftheNNLOcorrection fortheprocesse+e−→3jetsrequirestheknowledgeof the amplitudes for the three-parton final state e+e− →q¯qg up to two-loops [3, 4], the amplitudes ofthefour-parton finalstatese+e−→q¯qggande+e−→q¯qq¯′q′ uptoone-loop [5–8]andthefive- partonfinalstatese+e−→q¯qgggande+e−→q¯qq¯′q′gattreelevel[9–11]. Themostcomplicated amplitude is of course the two-loop amplitude. For the calculation of the two-loop amplitude specialintegrationtechniqueshavebeeninvented[12–15]. Theanalyticresultcanbeexpressedin terms of multiple polylogarithms, which in turn requires routines for the numerical evaluation of thesefunctions [16,17]. 2 NNLOpredictionsforeventshapesandjetratesinelectron-positronannihilation StefanWeinzierl 2. Subtraction andslicing Is is well known that the individual pieces in the NLO and in the NNLO contribution of eq. (1.4) are infrared divergent. To render them finite, a mixture of subtraction and slicing is employed. TheNNLOcontribution iswrittenas[18] hOiNNLO = O ds (0)−O ◦da single−O ◦da (0,2) Z (cid:16) 5 5 4 4 3 3 (cid:17) + O ds (1)+O ◦da single−O ◦da (1,1) Z (cid:16) 4 4 4 4 3 3 (cid:17) + O ds (2)+O ◦da (0,2)+O ◦da (1,1) . (2.1) Z (cid:16) 3 3 3 3 3 3 (cid:17) da single is the NLO subtraction term for 4-parton configurations, da (0,2) and da (1,1) are generic 4 3 3 NNLOsubtraction terms,whichcanbefurtherdecomposed into da (0,2) = da double+da almost+da soft−da iterated, 3 3 3 3 3 da (1,1) = da loop+da product−da almost−da soft+da iterated. (2.2) 3 3 3 3 3 3 In a hybrid scheme of subtraction and slicing the subtraction terms have to satisfy weaker condi- tionsascompared toastrictsubtraction scheme. Itisjustrequiredthat (a)theexplicit poles inthe dimensional regularisation parameter e inthesecond lineofeq. (2.1) cancel after integration over unresolved phase spaces for each point of the resolved phase space. (b)thephasespacesingularitiesinthefirstandinthesecondlineofeq.(2.1)cancelafterazimuthal averaging hasbeenperformed. Point (b) allows the determination of the subtraction terms from spin-averaged matrix elements. The subtraction terms can be found in [19–21]. The subtraction term da (0,2) without da soft 3 3 would approximate all singularities except a soft single unresolved singularity. The subtraction term da soft takes care of this last piece [2, 22]. The azimuthal average is not performed in the 3 Monte Carlo integration. Instead a slicing parameter h is introduced to regulate the phase space singularities related to spin-dependent terms. It is important to note that there are no numerically large contributions proportional to a power of lnh which cancel between the 5-, 4- or 3-parton contributions. Eachcontribution itselfisindependent ofh inthelimith →0. 3. Monte Carlointegration The integration over the phase space is performed numerically with Monte Carlo techniques. Efficiency of the Monte Carlo integration is an important issue, especially for the first moments of the event shape observables. Some of these moments receive sizable contributions from the close-to-two-jet region. Inthe5-partonconfigurationthiscorrespondsto(almost)threeunresolved partons. The generation of the phase space is done sequentially, starting from a 2-parton config- uration. In each step an additional particle is inserted [21, 23]. In going from n partons to n+1 3 NNLOpredictionsforeventshapesandjetratesinelectron-positronannihilation StefanWeinzierl partons,then+1-partonphasespaceispartitionedintodifferentchannels. Withinonechannel,the phasespaceisgenerated iteratively according to df = df df (3.1) n+1 n unresolvedi,j,k Theindicesi, jandkindicate thatthenewparticle jisinserted betweenthehardradiatorsiandk. Foreachchannelwerequirethattheproductofinvariantss s isthesmallestamongallconsidered ij jk channels. Fortheunresolved phasespacemeasurewehave 1 1 2p s df = ijk dx dx dj Q (1−x −x ) (3.2) unresolvedi,j,k 32p 3Z 1Z 2Z 1 2 0 0 0 We are not interested in generating invariants smaller than (h s), these configurations will be re- jectedbytheslicingprocedure. Insteadweareinterestedingeneratinginvariantswithvalueslarger than(h s)withadistributionwhichmimicstheoneofatypicalmatrixelement. Wethereforegener- atethe(n+1)-partonconfigurationfromthen-partonconfigurationbyusingthreerandomnumbers u ,u ,u uniformlydistributed in[0,1]andbysetting 1 2 3 x =h u1, x =h u2 j =2p u . (3.3) 1 PS 2 PS 3 Thephase space parameter h isanadjustable parameter ofthe order oftheslicing parameter h . PS Theinvariants aredefinedas s =x s , s =x s , s =(1−x −x )s . (3.4) ij 1 ijk jk 2 ijk ik 1 2 ijk Fromtheseinvariantsandthevalueofj wecanreconstructthefour-momentaofthe(n+1)-parton configuration [24]. Theadditionalphasespaceweightduetotheinsertionofthe(n+1)-thparticle is 1 s s w = ij jk ln2h . (3.5) 16p 2 s PS ijk Note that the phase space weight compensates the typical eikonal factor s /(s s ) of a single ijk ij jk emission. As mentioned above, the full phase space is constructed iteratively from these single emissions. 4. Numerical results Fig. 1 shows the results for the Durham three jet rate and the thrust distribution at the LEP I centre-of-mass energy Q2 =m with a (m )=0.118. The LO, NLO and NNLO predictions Z s Z are shown together withpthe experimental measured values from the Aleph experiment [25]. The bandsgivetherangeforthetheoretical prediction obtained fromvaryingtherenormalisation scale from m =Q/2to m =2Q. Notethat thetheory predictions inthese plotsare thepure perturbative predictions. Powercorrections orsoftgluonresummation effectsarenotincluded intheseresults. InarecentcalculationthelogarithmictermsoftheNNLOcoefficientofthethrustdistribution havebeencalculated basedonsoft-collinear effectivetheory[26]: dCt = 1 a ln5t +a ln4t +a ln3t +a ln2t +a lnt +a +O(t ) , t =1−T. (4.1) dt t 5 4 3 2 1 0 (cid:2) (cid:3) 4 NNLOpredictionsforeventshapesandjetratesinelectron-positronannihilation StefanWeinzierl Durhamthree-jetrate Thrust 0.6 0.7 LO LO NLO NLO NNLO 0.5 NNLO 0.6 Alephdata Alephdata 0.5 0.4 jetrate 00..43 s−d1Ts−d1T() 0.3 0.2 0.2 0.1 0.1 0 0 1e-04 0.001 0.01 0.1 1 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 ycut 1−T Figure 1: The scale variation of the Durham three jet rate and the thrust distribution at Q2 =m with Z a (m )=0.118. Thebandsgivethe rangefor the theoreticalpredictionobtainedfromvapryingthe renor- s Z malisationscalefromm =m /2tom =2m . Z Z NNLO NNLO NNLO 76000000 150000000 430500000000 hhh ===111000−−−579 300000 5000 0 250000 dC−−1T()1T()−d1T()432000000000 dC−−1T()1T()−d1T()---112-0505000000000000 dC−−1T()1T()−d1T()21150500000000000000000 0 1000 -25000 -50000 0 -30000 -100000 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.01 0.1 1 1e-04 0.001 0.01 0.1 1 1−T 1−T 1−T Figure2: AcomparisonoftheNNLOcoefficientofthethrustdistributionasobtainedfromthenumerical programwiththelogarithmictermsobtainedfromSCET. Thevaluesofthea ’sareforN =5 j f a =−18.96, a =−207.4, a =−122.3, a =1488.3, a =−822.3, a =−683.4. 5 4 3 2 1 0 The logarithmic terms give a good description of the thrust distribution in the close-to-two jet region. Theyarenot expected to giveanaccurate result in thehard region. Fig.2shows thecom- parison oftheNNLOcoefficientofthethrustdistribution asobtained fromthenumerical program witheq.(4.1). Intheleftplotoffig.2thex-axisshows(1−T)onalinearscale. Thiscorresponds tothehardregion,wheretheNNLOresultfromthenumericalprogramisexpectedtogivethecor- rect answer. Themiddle plot offig.2shows(1−T)on alogarithmic scale around (1−T)≈0.1. Thiscorrespondstothepeakregionortheoverlapregion,wheretheperturbativeNNLOresultand the one obtained from SCET agree. The right plot of fig. 2 shows (1−T) on a logarithmic scale around (1−T)≈0.001. Thiscorresponds totheextremetwo-jet region, inwhichthelogarithmic terms are dominant. In this region the results from the numerical program show a dependence on theslicingparameter. Thenumericalresultsforh =10−5,h =10−7andh =10−9areplotted. For smallervaluesofh theSCETresultisapproached. 5 NNLOpredictionsforeventshapesandjetratesinelectron-positronannihilation StefanWeinzierl References [1] A.Gehrmann-DeRidder,T.Gehrmann,E.W.N.Glover,andG.Heinrich, JHEP12,094(2007), 0711.4711; Phys.Rev.Lett.99,132002(2007),0707.1285;Phys.Rev.Lett.100,172001(2008), 0802.0813; JHEP05,106(2009),0903.4658. [2] S.Weinzierl, Phys.Rev.Lett.101,162001(2008),0807.3241; JHEP06,041(2009),0904.1077; Phys.Rev.D80,094018(2009),0909.5056. [3] L.W.Garland,T.Gehrmann,E.W.N.Glover,A.Koukoutsakis,andE.Remiddi, Nucl.Phys.B627, 107(2002),hep-ph/0112081;Nucl.Phys.B642,227(2002),hep-ph/0206067. [4] S.Moch,P.Uwer,andS.Weinzierl, Phys.Rev.D66,114001(2002),hep-ph/0207043. [5] Z.Bern,L.Dixon,D.A.Kosower,andS.Weinzierl, Nucl.Phys.B489,3(1997),hep-ph/9610370. [6] Z.Bern,L.Dixon,andD.A.Kosower, Nucl.Phys.B513,3(1998),hep-ph/9708239. [7] J.M.Campbell,E.W.N.Glover,andD.J.Miller, Phys.Lett.B409,503(1997),hep-ph/9706297. [8] E.W.N.GloverandD.J.Miller, Phys.Lett.B396,257(1997),hep-ph/9609474. [9] F.A.Berends,W.T.Giele,andH.Kuijf, Nucl.Phys.B321,39(1989). [10] K.HagiwaraandD.Zeppenfeld, Nucl.Phys.B313,560(1989). [11] Z.NagyandZ.Trocsanyi, Phys.Rev.D59,014020(1999),hep-ph/9806317. [12] T.GehrmannandE.Remiddi, Nucl.Phys.B580,485(2000),hep-ph/9912329;Nucl.Phys.B601, 248(2001),hep-ph/0008287;Nucl.Phys.B601,287(2001),hep-ph/0101124. [13] S.Moch,P.Uwer,andS.Weinzierl, J.Math.Phys.43,3363(2002),hep-ph/0110083. [14] S.Weinzierl, Comput.Phys.Commun.145,357(2002),math-ph/0201011. [15] S.MochandP.Uwer, Comput.Phys.Commun.174,759(2006),math-ph/0508008. [16] T.GehrmannandE.Remiddi, Comput.Phys.Commun.141,296(2001),hep-ph/0107173;Comput. Phys.Commun.144,200(2002),hep-ph/0111255. [17] J.VollingaandS.Weinzierl, Comput.Phys.Commun.167,177(2005),hep-ph/0410259. [18] S.Weinzierl, JHEP03,062(2003),hep-ph/0302180;JHEP07,052(2003),hep-ph/0306248. [19] A.Gehrmann-DeRidder,T.Gehrmann,andE.W.N.Glover, Nucl.Phys.B691,195(2004), hep-ph/0403057;Phys.Lett.B612,36(2005),hep-ph/0501291;Phys.Lett.B612,49(2005), hep-ph/0502110;JHEP09,056(2005),hep-ph/0505111. [20] A.Gehrmann-DeRidder,T.Gehrmann,E.W.N.Glover,andG.Heinrich, JHEP11,058(2007), 0710.0346. [21] S.Weinzierl, Phys.Rev.D74,014020(2006),hep-ph/0606008. [22] S.Weinzierl, JHEP07,009(2009),0904.1145. [23] S.Weinzierl, Phys.Lett.B644,331(2007),hep-ph/0609021. [24] S.WeinzierlandD.A.Kosower, Phys.Rev.D60,054028(1999),hep-ph/9901277. [25] ALEPH,A.Heisteretal., Eur.Phys.J.C35,457(2004). [26] T.BecherandM.D.Schwartz, JHEP07,034(2008),0803.0342. 6