ebook img

New Results from the MINOS Experiment - EPS 2011 conference proceedings PDF

0.09 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview New Results from the MINOS Experiment - EPS 2011 conference proceedings

New Results from the MINOS Experiment 2 1 0 2 n a J 7 1 AnnaHOLIN∗† UniversityCollegeLondon ] x E-mail: [email protected] e - p e The MINOS experiment is a long-baseline neutrino experiment designed to study neutrino be- h haviour,inparticularthephenomenonofneutrinooscillations.MINOSsendstheNuMIneutrino [ beamthroughtwodetectors,aNearDetector1kmdownstreamfromthebeamsourceatFermilab, 1 v andaFarDetector735kmawayintheSoudanMineinMinnesota.MINOShasbeentakingbeam 5 datasince 2005. Thisdocumentsummarisesrecentneutrinooscillationsresults, withparticular 4 6 emphasisonelectronneutrinoappearance,whichprobestheangleq 13 oftheneutrinomassmix- 3 ingmatrix. Foranexposureof8.2×1020protonsontarget,MINOSfindsthatsin2(2q )<0.12 13 . 1 forthenormalmasshierarchy,and<0.20fortheinvertedmasshierarchyatthe90%C.L.,ifthe 0 2 CP-violatingphased =0. 1 : v i X r a XXIstInternationalEurophysicsConferenceonHighEnergyPhysics 21-27July2011 Grenoble,RhonesAlpesFrance ∗Speaker. †OnbehalfoftheMINOSCollaboration (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ NewResultsfromtheMINOSExperiment AnnaHOLIN 1. Neutrino Oscillations In the past 20 years, one of the most significant developments in particle physics was the discoveryofneutrinooscillations [1]-[6],indicatingthatneutrinoshavemass. Therearethreegen- erations (flavours) ofneutrino, theelectron, muon,andtauneutrino (n e,n m ,n t ). Eachneutrino also has a corresponding anti-particle. Neutrino oscillations are parametrised using two mass squared differences(D m2 -solarsector,andD m2 -atmosphericsector),threemixingangles(q ,q ,and 21 32 12 13 q ),andaCPviolating phase(d ). 23 2. The MINOSExperiment The MINOS experiment [7] is designed to probe neutrino behaviour and the phenomenon of neutrino oscillations by sending the NuMIneutrino beam through twodetectors [8], the Near De- tector atFermilab, 1km downstream ofthebeam source, andtheFarDetector intheSoudanMine in Minnesota, 735km away. Both detectors are magnetized iron scintillator tracking calorimeters andaredesignedtobefunctionally identicaltoallowcancellation ofcertainsystematicerrors,like for example any mismodelling of the neutrino flux or cross-section. The NuMI neutrino beam is created by impacting 120 GeV protons onto a thin graphite target. The resulting hadrons (mostly pionsandkaons)arecollimatedbytwomagnetichornsandthendecayproducingabeamofmostly n m withasmall 7%component ofn m ,and a1.3% contamination ofbeam n e and n e. Itispossible toreversethehorncurrentsoastoachieveabeamwithahigherproportionofmuonantineutrinos. 3. Muon Neutrino Disappearance MINOS oscillation analyses use the Near Detector to measure the neutrino interaction rate before any oscillations have occurred. These measured data are then extrapolated to the Far De- tector to predict what would be seen in the absence of neutrino oscillations. This final data set is then unblinded and compared to the prediction. In the case of the n m disappearance analysis, the survival probability ofamuonneutrinoisgivenby: P(n m →n m )≈1−sin2(2q 23)sin2(1.27D m232(L/E)) (3.1) Figure 1 shows the results of the n m disappearance analysis for an exposure of 7.25×1020 protons-on-target (POT). For this data set, 2451 charged current muon neutrino events were pre- dicted in the Far Detector fiducial volume, but 1986 events were observed [9]. Consequently, the atmosphericmass-squared differencewasfoundtobeD m2=2.32+0.12×10−3eV2,andthemixing −0.08 angle parameter sin2(2q ) >0.90 (90% C.L.). Exotic neutrino models like neutrino decoherence andneutrino decaywereexcluded atthe9s and7s levelrespectively. 4. Muon Antineutrino Disappearance MINOS has taken some data in antineutrino (reversed horn current) mode and carried out an antineutrino disappearance analysis [10]. For an exposure of 1.71×1020 POT, MINOS pre- dicted 156 charged current n m events in the absence of oscillations, however, 97 events were ob- served, thusdisfavouring thenooscillations hypothesis atthe6.3s level. Thebestfitantineutrino 2 NewResultsfromtheMINOSExperiment AnnaHOLIN · 10-3 3.5 MINOS best fit MINOS 2008 90% MINOS 90% Super-K 90% 2)3.0 MINOS 68% Super-K L/E 90% MINOS Far Detector V e GeV300 FNaor odsectiellcattoiorn dsata -3(10 2.5 s / 200 BNeCs bt aocskcgillraotuionnd fit 2| m nt e D|2.0 v100 E 0 1.5 0 5 10 15 20 30 50 0.80 0.85 0.90 0.95 1.00 Reconstructed neutrino energy (GeV) sin2(2q ) Figure1: The leftplotshowstheenergyspectrumoffullyreconstructedFarDetectoreventsclassified as chargedcurrentinteractionsin black. Theredhistogramrepresentsthespectrumpredictedfrommeasure- ments in the Near Detector assuming no oscillations, while the blue histogram reflects the best fit of the oscillation hypothesis. The shaded area shows the predicted neutral current background. The right plot shows the likelihood contoursof 68% and 90% C.L. around the best fit values for the mass splitting and mixingangle.Alsoshownarecontoursfrompreviousmeasurements[2,3]. oscillation parameters were found to be |D m2| = (3.36+0.46(stat.)±0.06(syst.))×10−3 eV2 and −0.40 sin2(2q )=0.86+0.11(stat.)±0.01(syst.). −0.12 5. Electron Neutrino Appearance Analysis Muon neutrinos may oscillate into electron neutrinos as they travel from the Near to the Far Detector. Thecorresponding oscillation probability istofirstordergivenby: P(n m →n e)≈sin2(2q 13)sin2q 23sin2(1.27D m2atm(L/E)) (5.1) If the oscillation angle q is non-zero, then this should manifest itself as n appearance at 13 e the Far Detector. In the case of MINOS, the search for n appearance [11] is however made very e difficult by low statistics and by a large background of neutral current events that mimic charged current n events. To disentangle any potential signal from the large backgrounds, a number of e cuts are applied to the data. First, a number of data quality cuts like timing and fiducial cuts are applied toselectgoodbeamevents. Then,sincen -likeeventsconsistofelectromagnetic showers, e any events with long muon tracks are removed from the sample. Only events with at least one showerandawell-definedshowercore,andwithinanenergyrangeof1-8GeV,areselectedforthe final sample. Finally a selection algorithm is used to obtain the final data sample. This selection algorithm uses a MC library of 20 million signal and 30 million neutral current events to find the 50 best matches for each event and to construct three variables that are combined into a neural networktoobtainafinaldiscriminant variable (LEM). 3 NewResultsfromtheMINOSExperiment AnnaHOLIN In order to use the Near Detector data to predict the Far Detector data, the former is decom- posedintoitscomponents: 60%neutralcurrentevents,29%short-trackchargedcurrentn m events, and 11% intrinsic beam charged current n events after all selection cuts. Those components are e then extrapolated to the Far Detector using Monte Carlo Far/Near ratios accounting for various systematic errors such as flux, cross-section, fiducial volume, energy smearing, detector effects, and muon neutrino oscillation parameters. A n t appearance component resultant from oscillated n m isalsoaddedtotheFarDetectorprediction. For the final analysis, MINOS uses five bins in reconstructed energy and three bins for the LEM discriminant variable (0.6-0.7, 0.7-0.8, and above 0.8). Systematic uncertainties taken into account include the composition of the Near Detector spectrum, the calibration (relative energy calibration, gains,absolute energycalibration), therelativeNear/Farnormalization, thehadroniza- tionmodelandothersmalleruncertainties. InasignalenhancedregionwhereLEM>0.7,MINOS predicts 49.6±7.0(stat.)±2.7(syst.) events in the Far Detector for an exposure of 8.2×1020, and observes 62 events. The final Far Detector spectra can be seen in Figure 2. If the final data are fittedtoaneutrino appearance oscillation hypothesis, foraCP-violating phased =0, MINOSfinds sin22q <0.12forthenormalmasshierarchy,andsin22q <0.20fortheinvertedmasshierarchy 13 13 at the 90% C.L.. The corresponding best fit values are sin22q =0.041 for the normal mass hier- 13 archy, andsin22q =0.079fortheinverted masshierarchy. Figure3showsthefinaln appearance 13 e limitsobtainedbyMINOS.ItcanbeseenthatMINOSwasabletoexcludeparameterspacebelow thelimitsetbytheChoozexperiment[12]forallvaluesofd forthenormalmasshierarchy. 200 180 MINOS Far Detector MINOS Far Detector Best Fit (0.6 < LEM < 0.7) 20 PoT10111246000 Preselection RAenBgaailcoyksngirsound 2020202020 POT10 POT10 POT10 POT10 POT1012121212125050505050 FBSDiagc nDkaagltraound ·nts / 8.2 1068000 PDraetadiction ····· nts / 8.2 nts / 8.2 nts / 8.2 nts / 8.2 nts / 8.2 1111100000 sin2(2q13)=0.0M4e1r, gDemd23 2f>o0r, dFCiPt=0 e eeeee v 40 vvvvv 55555 E EEEEE 20 0 00000 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 11111 22222 33333 44444 55555 66666 77777 88888 LEM PID RRRRReeeeecccccooooonnnnnssssstttttrrrrruuuuucccccttttteeeeeddddd EEEEEnnnnneeeeerrrrrgggggyyyyy (((((GGGGGeeeeeVVVVV))))) MINOS Far Detector Best Fit (0.7 < LEM < 0.8) MINOS Far Detector Best Fit (LEM > 0.8) TTTTT2222200000 FD Data TTTTT2222200000 FD Data OOOOO OOOOO PPPPP Background PPPPP Background 2020202020 0 0 0 0 01111155555 Signal 2020202020 0 0 0 0 01111155555 Signal 11111 11111 ·····2 2 2 2 2 sin2(2q13)=0.041, D m232>0, dCP=0 ·····2 2 2 2 2 sin2(2q13)=0.041, D m232>0, dCP=0 s / 8.s / 8.s / 8.s / 8.s / 8.1111100000 Merged for Fit s / 8.s / 8.s / 8.s / 8.s / 8.1111100000 Merged for Fit ntntntntnt ntntntntnt eeeee eeeee vvvvv 55555 vvvvv 55555 EEEEE EEEEE 00000 00000 11111 22222 33333 44444 55555 66666 77777 88888 11111 22222 33333 44444 55555 66666 77777 88888 RRRRReeeeecccccooooonnnnnssssstttttrrrrruuuuucccccttttteeeeeddddd EEEEEnnnnneeeeerrrrrgggggyyyyy (((((GGGGGeeeeeVVVVV))))) RRRRReeeeecccccooooonnnnnssssstttttrrrrruuuuucccccttttteeeeeddddd EEEEEnnnnneeeeerrrrrgggggyyyyy (((((GGGGGeeeeeVVVVV))))) Figure 2: The top left plot shows the LEM discriminant variable distribution in the Far Detector. The toprightplotandthebottomplotsshowthereconstructedenergyspectraforchargedcurrentn candidate e eventsforthethreeLEManalysisbins. Theblackpointsshowthedatawithstatisticalerrorbars. Thered histogramsshowtheexpectedbackgroundtogetherwiththecontributionofn appearancesignal(hatched e area)forthebest-fitvalueofsin22q =0.041. 13 4 NewResultsfromtheMINOSExperiment AnnaHOLIN 22..00 D m2 > 0 6. Conclusions 11..55 MINOS Best Fit 68% C.L. )) 90% C.L. The MINOS experiment has carried out a num- ddpp ( ( 11..00 CHOOZ 90% C.L. ber of analyses that are helping to measure and hone 2sin2q = 1 for CHOOZ 23 in on the values of the neutrino oscillation parame- 00..55 ters. In the atmospheric sector, MINOS has been able 0022....000000 00..11 00..22 00..33 00..44 to carry out the world’s most precise measurement of D m2 < 0 the oscillation parameter D m2 . For the electron neu- 32 11..55 trinoappearance analysis, MINOShasbeenabletoset theworld’stightestlimiton2sin2(2q )sin2q forthe 13 23 pdpd) () ( 11..00 M8.I2N· O10S20 POT normalmasshierarchy. ThisworkwassupportedbytheU.S.DOE;theU.K.STFC; 00..55 theU.S.NSF;theStateandUniversityofMinnesota; theUniver- sityofAthens,Greece;andBrazil’sFAPESP,CNPq,andCAPES. 00..00 00 00..11 00..22 00..33 00..44 WearegratefultotheMinnesotaDepartmentofNaturalResources, 22ssiinn22((22qq ))ssiinn22qq thecrewof theSoudanUnderground Laboratory, andthestaffof 1133 2233 Fermilabfortheircontributionstothiseffort. Figure3: Allowedrangesandbestfitsfor 2sin2(2q )sin2q as a function of CP- References 13 23 violating phase d . The upper panel as- [1] B.Pontecorvo, sumesthenormalneutrinomasshierarchy, JETP34,172(1958);V.N.GribovandB.Pontecorvo, and the lower panel assumes the inverted Phys.Lett.B28,493(1969);Z.Maki,M.Nakagawa, mass hierarchy. The vertical dashed line andS.Sakata,Prog.Theor.Phys.28,870(1962). showstheChooz90%C.L.upperlimitas- sumingq =45◦andD m2 =2.32eV2. [2] Y.Ashieetal.,Phys.Rev.Lett. 23 32 93,101801(2004);Y.Ashieetal.,Phys.Rev.D71,112005 (2005);J.Hosakaetal.,Phys.Rev.D74,032002(2006). [3] P.Adamsonetal.,Phys.Rev.Lett.101,131802(2008). [4] B.Aharmimetal.,Phys.Rev.C72055502(2005). [5] S.Abeetal.,Phys.Rev.Lett.100,221803(2008). [6] M.H.Ahnetal.,Phys.Rev.D74,072003(2006). [7] P.Adamsonetal.,Phys.Rev.D77(2008). [8] D.G.Michaeletal.,Nucl.Inst.Meth.A596(2008). [9] P.Adamsonetal.,Phys.Rev.Lett.106,181801(2011). [10] P.Adamsonetal.,Phys.Rev.Lett.107,021801(2011). [11] P.Adamsonetal.,Phys.Rev.Lett.107,181802(2011). [12] M.Apollonioetal.,EuropeanPhys.Jour.C27,331(2003). 5

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.