ebook img

Neverending Fractions: An Introduction to Continued Fractions PDF

222 Pages·2014·4.447 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Neverending Fractions: An Introduction to Continued Fractions

Neverending Fractions Despite their classical nature, continued fractions are a neverending research area, with a body of results accessible enough to suit a wide audience, from researchers to students and even amateur enthusiasts. Neverending Fractions bringstheseresultstogether,offeringfreshperspectivesonamaturesubject. Beginning with a standard introduction to continued fractions, the book covers a diverse range of topics, including elementary and metric properties, quadraticirrationalsandmoreexotictopicssuchasfoldedcontinuedfractions and Somos sequences. Along the way, the authors reveal some amazing ap- plications of the theory to seemingly unrelated problems in number theory. Previously scattered throughout the literature, these applications are brought togetherinthisvolumeforthefirsttime. Awidevarietyofexercisesguidereadersthroughthematerial,andthiswill beespeciallyhelpfultoreadersusingthebookforself-study;theauthorsalso providemanypointerstotheliterature. Downloaded from https://www.cambridge.org/core. Tufts Univ, on 11 Jul 2018 at 02:13:35, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511902659 AUSTRALIANMATHEMATICALSOCIETYLECTURESERIES Editor-in-chief:ProfessorC.Praeger,SchoolofMathematicsandStatistics, UniversityofWesternAustralia,Crawley,WA6009,Australia Editors: ProfessorP.Broadbridge,SchoolofEngineeringandMathematicalSciences,LaTrobeUniversity, Victoria3086,Australia ProfessorM.Murray,SchoolofMathematicalSciences,UniversityofAdelaide,SA5005,Australia ProfessorJ.Ramagge,SchoolofMathematicsandAppliedStatistics,UniversityofWollongong, NSW2522,Australia ProfessorM.Wand,SchoolofMathematicalSciences,UniversityofTechnology,Sydney, NSW2007,Australia 1. IntroductiontoLinearandConvexProgramming,N.CAMERON 2. ManifoldsandMechanics,A.JONES,A.GRAY&R.HUTTON 3. IntroductiontotheAnalysisofMetricSpaces,J.R.GILES 4. AnIntroductiontoMathematicalPhysiologyandBiology,J.MAZUMDAR 5. 2-KnotsandtheirGroups,J.HILLMAN 6. TheMathematicsofProjectilesinSport,N.DEMESTRE 7. ThePetersenGraph,D.A.HOLTON&J.SHEEHAN 8. LowRankRepresentationsandGraphsforSporadicGroups, C.E.PRAEGER&L.H.SOICHER 9. AlgebraicGroupsandLieGroups,G.I.LEHRER(ed.) 10. ModellingwithDifferentialandDifferenceEquations, G.FULFORD,P.FORRESTER&A.JONES 11. GeometricAnalysisandLieTheoryinMathematicsandPhysics, A.L.CAREY&M.K.MURRAY(eds.) 12. FoundationsofConvexGeometry,W.A.COPPEL 13. IntroductiontotheAnalysisofNormedLinearSpaces,J.R.GILES 14. Integral:AnEasyApproachafterKurzweilandHenstock, L.P.YEE&R.VYBORNY 15. GeometricApproachestoDifferentialEquations, P.J.VASSILIOU&I.G.LISLE(eds.) 16. IndustrialMathematics,G.R.FULFORD&P.BROADBRIDGE 17. ACourseinModernAnalysisanditsApplications,G.COHEN 18. Chaos:AMathematicalIntroduction,J.BANKS,V.DRAGAN&A.JONES 19. QuantumGroups,R.STREET 20. UnitaryReflectionGroups,G.I.LEHRER&D.E.TAYLOR 21. LecturesonRealAnalysis,F.LA´RUSSON 22. RepresentationsofLieAlgebras,A.HENDERSON Downloaded from https://www.cambridge.org/core. Tufts Univ, on 11 Jul 2018 at 02:13:35, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511902659 AustralianMathematicalSocietyLectureSeries:23 Neverending Fractions An Introduction to Continued Fractions JONATHAN BORWEIN UniversityofNewcastle,NewSouthWales ALF VAN DER POORTEN MacquarieUniversity,Sydney JEFFREY SHALLIT UniversityofWaterloo,Ontario WADIM ZUDILIN UniversityofNewcastle,NewSouthWales Downloaded from https://www.cambridge.org/core. Tufts Univ, on 11 Jul 2018 at 02:13:35, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511902659 UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learningandresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9780521186490 (cid:2)c JonathanBorwein,TheEstateofAlfvanderPoorten,JeffreyShallit andWadimZudilin2014 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2014 PrintedintheUnitedKingdombyCPIGroupLtd,CroydonCR04YY AcataloguerecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloguinginPublicationdata Borwein,JonathanM. Neverendingfractions:anintroductiontocontinuedfractions/JonathanBorwein, UniversityofNewcastle,NewSouthWales,AlfvanderPoorten,MacquarieUniversity, Sydney,JeffreyShallit,UniversityofWaterloo,Ontario,WadimZudilin,Universityof Newcastle,NewSouthWales. pages cm–(AustralianMathematicalSocietylectureseries;23) Includesbibliographicalreferencesandindex. ISBN978-0-521-18649-0(alk.paper) 1. Continuedfractions. 2. Processes,Infinite. 3. Fractions. I. VanDerPoorten,A.J. II. Shallit,JeffreyOutlaw. III. Zudilin,Wadim. IV. Title. V. Title:Continuedfractions. QA295.B667 2014 513.2(cid:3)6–dc23 2014006908 ISBN978-0-521-18649-0Paperback Additionalresourcesforthispublicationathttp://carma.newcastle.edu.au/Neverending CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication, anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Downloaded from https://www.cambridge.org/core. Tufts Univ, on 11 Jul 2018 at 02:13:35, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511902659 Contents Preface pageix 1 Somepreliminariesfromnumbertheory 1 1.1 DivisibilityinZ.Euclideanalgorithm 1 1.2 Primes 5 1.3 FibonaccinumbersandthecomplexityoftheEuclidean algorithm 8 1.4 Approximationofrealnumbersbyrationals 11 1.5 Fareysequences 16 Notes 21 2 Continuedfractions 23 2.1 Aπ-overviewofthetheory 23 2.2 FinitecontinuedfractionsandtheEuclideanalgorithm 25 2.3 Algebraictheoryofcontinuedfractions 27 2.4 Relationsforcontinuantsofacontinuedfraction 30 2.5 Continuedfractionofarealnumber 32 2.6 AtasteofDiophantineapproximation 35 2.7 Equivalentnumbers 37 2.8 Continuedfractionofaquadraticirrational 40 2.9 TheEuler–Lagrangetheorem 43 2.10 Examplesofnon-periodiccontinuedfractions 45 2.11 Thecontinuedfractionfore 48 2.12 Theorderofapproximationofebyrationals 49 2.13 Boundedpartialquotients 52 2.14 InthefootstepsofMaillet 54 Notes 61 v Downloaded from https://www.cambridge.org/core. Tufts Univ, on 11 Jul 2018 at 02:13:35, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511902659 vi Contents 3 Metrictheoryofcontinuedfractions 64 3.1 Partialquotientsofanumberasfunctionsofthatnumber 65 3.2 Growthofpartialquotientsofatypicalrealnumber 67 3.3 Approximationofalmostallrealnumbersbyrationals 70 3.4 Gauss–Kuzminstatistics 75 Notes 77 4 Quadraticirrationalsthroughamagnifier 80 4.1 Continuedfractionsofalgebraicnumbers 80 4.2 Quadraticirrationalsrevisited 81 4.3 UnitsandPell’sequation 86 4.4 Negativeexpansionsandthemanysurprisesofthe number163 91 Notes 94 5 HyperellipticcurvesandSomossequences 97 5.1 Twosurprisingallegations 97 5.2 Continuedfractionsinfunctionfields 99 5.3 Unitsandtorsion 103 5.4 Theellipticcase 108 5.5 Highergenus 112 Notes 113 6 FromfoldingtoFibonacci 114 6.1 Folding 114 6.2 Zaremba’sconjecture 117 6.3 OntoFibonacci 118 6.4 Foldingandrippling 120 Notes 126 7 Theintegerpartofqα+β 127 7.1 InhomogeneousDiophantineapproximation 127 7.2 Lambertseriesexpansionsofgeneratingfunctions 134 7.3 High-precisionfraud 143 Notes 144 8 TheErdo˝s–Moserequation 147 8.1 Arithmeticandanalysisoftheequation 147 8.2 Asymptoticsandcontinuedfractionforlog2 152 8.3 Efficientwaysofcomputingcontinuedfractions 154 8.4 Boundsforsolutions 158 Notes 159 Downloaded from https://www.cambridge.org/core. Tufts Univ, on 11 Jul 2018 at 02:13:35, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511902659 Contents vii 9 Irregularcontinuedfractions 161 9.1 Generaltheory 161 9.2 Eulercontinuedfraction 164 9.3 Gausscontinuedfractionforthehypergeometricfunction 166 9.4 Ramanujan’sAGMcontinuedfraction 169 9.5 Anirregularcontinuedfractionforζ(2)=π2/6 173 9.6 Theirrationalityofπ2 179 Notes 184 AppendixA Selectedcontinuedfractions 188 References 200 Index 209 Downloaded from https://www.cambridge.org/core. Tufts Univ, on 11 Jul 2018 at 02:13:35, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511902659 Downloaded from https://www.cambridge.org/core. Tufts Univ, on 11 Jul 2018 at 02:13:35, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511902659 Preface This book arose from many lectures the authors delivered independently at differentlocationstostudentsofdifferentlevels. ‘Theory’ is a scientific name for ‘story’. So, if the reader somehow feels uncomfortableaboutfollowingatheoryofcontinuedfractions,heorshemight bemorecontenttoreadthestoryofneverendingfractions. Thequeenofmathematics–numbertheory–remainsoneofthemostacces- siblepartsofsignificantmathematicalknowledge.Continuedfractionsforma classicalareawithinnumbertheory,andtherearemanytextbooksandmono- graphs devoted to them. Despite their classical nature, continued fractions remain a neverending research field, many of whose results are elementary enoughtobeexplainedtoawideaudienceofgraduates,postgraduatesandre- searchers,aswellasteachersandevenamateursinmathematics.Thesearethe peopletowhomthisbookisaddressed. After a standard introduction to continued fractions in the first three chap- ters, including generalisations such as continued fractions in function fields and irregular continued fractions, there are six ‘topics’ chapters. In these we givevariousamazingapplicationsofthetheory(irrationalityproofs,generat- ingseries,combinatoricsonwords,Somossequences,Diophantineequations andmanyotherapplications)toseeminglyunrelatedproblemsinnumberthe- ory.Themainfeaturethatwewouldliketomakeapparentthroughthisbook is the naturalness of continued fractions and of their expected appearance in mathematics. The book is a combination of formal and informal styles. The aforementionedapplicationsofcontinuedfractionsare,forthemostpart,not tobefoundinearlierbooksbutonlyinscatteredscientificarticlesandlectures. Wehaveincludedvariousremarksandexercisesbuthavebeensparingwith thelatter.Inthetopicschapterswedonotalwaysgivefulldetails.Needlessto say,alltopicscanbefollowedupintheendnotesforeachchapterandthrough thereferences. ix Downloaded from Cambridge Books Online by IP 129.15.14.53 on Mon Mar 30 18:18:29 BST 2015. http://dx.doi.org/10.1017/CBO9780511902659.001 Cambridge Books Online © Cambridge University Press, 2015 x Preface We would like to thank many colleagues for useful conversations during the development of this book, especially Mumtaz Hussain, Pieter Moree and James Wan. We are also deeply indebted to the copy-editor Susan Parkinson whoseincisiveandtirelessworkonthebookhasenhanceditsappearanceim- measurably. Finally, Alf van der Poorten (1942–2010) died before this book could be broughttofruition.Hewasbothagoodfriendandafinecolleague.Weoffer this book both in his memory and as a way of bringing to a more general audiencesomeofhiswonderfulcontributionstothearea.Chapters4,5and6 originateinlecturesAlfgaveinthelastfewyearsofhislifeand,formatters ofbothtasteandnecessity,theyarelargelyleftaspresentationsinhisunique anderuditestyle. Alfred“Alf”JacobusvanderPoorten (16May1942inAmsterdam–9October2010inSydney) A full mathematical biography of Alf is to be found in the 2013 volume dedicatedtohismemory[31]. JonBorwein,JeffreyShallit,andWadimZudilin NewcastleandWaterloo Downloaded from Cambridge Books Online by IP 129.15.14.53 on Mon Mar 30 18:18:29 BST 2015. http://dx.doi.org/10.1017/CBO9780511902659.001 Cambridge Books Online © Cambridge University Press, 2015

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.