ebook img

Multi-Processor Approximate Message Passing Using Lossy Compression PDF

0.14 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Multi-Processor Approximate Message Passing Using Lossy Compression

MULTI-PROCESSOR APPROXIMATEMESSAGEPASSING USINGLOSSY COMPRESSION PuxiaoHan,v JunanZhu,n RuixinNiu,v andDrorBaronn v:VirginiaCommonwealthUniversity,Dept.ElectricalandComputerEngineering Richmond,VA23284,U.S.A.Email:{hanp,rniu}@vcu.edu n:NorthCarolinaStateUniversity,Dept.ElectricalandComputerEngineering 6 Raleigh,NC27695,U.S.A.Email:{jzhu9,barondror}@ncsu.edu 1 0 2 ABSTRACT Comparedwithmanyresultsondistributedcomputation, n a Inthispaper,acommunication-efficientmulti-processorcom- optimization,andnetworktopology[3,13]inMP-CS,amod- J pressed sensing framework based on the approximate mes- estsubsetoftheliteratureconsidersthecommunicationcosts 8 sagepassingalgorithmis proposed. We performlossycom- of the GC step [4,5,14,15]. In this paper, we still consider 1 pressiononthedatabeingcommunicatedbetweenprocessors, multi-processor AMP (MP-AMP), and focus more on the ] resultinginareductionincommunicationcostswithaminor communication costs. In contrast to our prior work [6], we C degradationinrecoveryquality. Intheproposedframework, are willing to accept a minor decrease in recovery quality D a new state evolution formulation takes the quantization er- while providing significant and often dramatic communi- . rorintoaccount,andanalyticallydeterminesthecodingrate cations savings. Such results are especially well-suited to cs requiredineachiteration. Twoapproachesforallocatingthe clusterswherecommunicationbetween serversis costly. To [ codingrate,anonlineback-trackingheuristicandanoptimal achieve the reduction in communicationcosts, we use lossy allocation scheme based on dynamic programming, provide compression to reduce the inter-processor communication 1 v significantreductionsincommunicationcosts. costs, and provide a modified SE formulation that accounts 5 for quantization error. Two approaches for allocating the Index Terms— lossy compression, multi-processor ap- 9 codingrate,anonlineback-trackingheuristicandanoptimal 5 proximatemessagepassing,ratedistortionfunction. allocation scheme based on dynamic programming, provide 4 significantreductionsincommunicationcosts. Furthermore, 0 1. INTRODUCTION we consider Bayesian AMP, which achieves better recovery . 1 accuracy than non-Bayesian AMP [7] by assuming that the 0 Compressedsensing(CS)[1,2]hasnumerousapplicationsin unknownsignalfollowsaknownpriordistribution. 6 variousareasofsignalprocessing.Duetothecurseofdimen- Inthe following,boldcapitalandboldlower-caseletters 1 : sionality,itcanbedemandingtoperformCSonasinglepro- are used to denote matrices and vectorsrespectively, capital v cessor. Furthermore,clusterscomprisedof manyprocessors letters without bold typically refer to dimensionality or ran- i X have the potential to accelerate computation. Hence, multi- dom variables, and []T denotes vector or matrix transposi- · r processorCS(MP-CS)hasbecomeofrecentinterest[3–5]. tion. The ℓ2 norm of a vectoris denotedby , (µ,σ2) a We considerMP-CSsystemscomprisedoftwoparts: (i) isa Gaussiandistributionwithmeanµ andvkar·iakncNeσ2, and local computation (LC) is performed at each processor, and [a,b]isacontinuousuniformdistributionwithin[a,b]. U (ii) global computation (GC) obtains an estimate of the un- known signal after processors exchange the results of LC. 2. THECENTRALIZEDAMPALGORITHM In our previous work [6], we developed an MP-CS frame- work based on the approximatemessage passing (AMP) al- Approximatemessagepassing(AMP)[7]isastatisticalalgo- gorithm [7], in which a GC approach performs AMP in an rithmderivedfromthetheoryofprobabilisticgraphicalmod- MPsystem,providingthesamerecoveryresultascentralized els [16]. Given noisy measurements y = As + e of the 0 AMP.WechoseAMP,becauseitisanalyticallytractabledue unknownsignals RN,whereelementsins areindepen- 0 0 to the state evolution (SE) [8,9] formalism, and can be ex- ∈ dentandidenticallydistributed(i.i.d.) realizationsofascalar tended to Bayesian CS [9,10], matrix completion [11], and randomvariable S p , A RM×N is the sensing ma- non-negativeprincipalcomponentanalysis(PCA)[12]. trixwithentries 0i.i∼.d. S0(0,1/∈M),ande RM isadditive ∼ N ∈ measurementnoise,whichisi.i.d. (0,σ2),AMPiteratively TheworkofP.HanandR.NiuwassupportedinpartbytheVCUPres- N e identialResearchQuestFund. TheworkofJ.ZhuandD.Baronwassup- recoverss0,startingfromaninitialestimatex0 =0andresid- portedinpartbytheNationalScienceFoundationunderGrantCCF-1217749 ualz =y: andtheU.S.ArmyResearchOfficeunderContractW911NF-14-1-0314. 0 ft =xt+ATzt, (1) xt+1 =ηt(ft), (2) ItcanbeseenthatintheGCstepofMP-AMP,eachpro- zt+1 =y−Axt+1+(N/M)ηt′(ft)zt, (3) csuesmsosrthpemsentodsobfttpaitnofthaenfduxsion,ceanntders,enanddsxthe futosioeancchepnrtoer- t t+1 t+1 wheretistheiterationnumber,thebarabovethevectorin(3) cessor.1 Ourgoalinthispaperistoreducethesecommunica- denotes its empirical average, η is known as the denoising t tioncostswhilebarelyimpactingrecoveryperformance. functionordenoiser,andηt′ denotesitsderivative. Supposethatalltheelementsinfparecomputedas32-bit t Accordingto BayatiandMontanari[9], asN and single-precisionfloating-pointnumbers.BecauseSEisrobust → ∞ M/N = κ > 0, the elementsof ft in (1) followi.i.d. Ft = to small perturbations[7,8], we can compress fp lossily up S +σ Z,whereZ (0,1)andthesequence σ2 satisfies t 0 t ∼N { t} tosomereasonabledistortionlevel,andsendthecompressed σt2+1 =σe2+(1/κ)E[ηt(S0+σtZ)−S0]2 (4) outputtothefusioncenter.Toensurethatthiserrorisindeeda =σ2+(1/κ)E x s 2/N. “smallperturbation,”werequiretheerrortobeadditiveand, e k t+1− 0k if possible, white and Gaussian, so that we can analyze the Notethatσ02 = σe2+(1/κ)E[S0]2;equation(4)isknownas relationshipbetweentheerrorandcodingrate. stateevolution(SE),andtheoptimaldenoiserformeansquare error(MSE)istheconditionalmean[9,17]: 3.2. LossyCompressionoffp t ηt(Ft)=E[S0 S0+σtZ =Ft]. (5) Before we propose specific lossy compression approaches, | we describe an important property of MP-AMP. In addition In this paper, we assume that S follows the Bernoulli 0 to the well-knownGaussianity of the vectorf s [9], nu- Gaussiandistribution: mericalresultsshowthatelementsoffp (1/tP−)s0are also pS0(s)=ǫN(s;µs,σs2)+(1−ǫ)δ(s), (6) fi.pi.d.G(1a/uPss)isanwanidthfmqean(10/aPnd)svarairaencinetdσ−et2p/ePnd.eFnutrf0tohrerdmifoferer-, whereδ(s)denotestheDiracdeltafunction,andS0typically etnt−processor0s p andt q−. In light0of this property, fp can be t hasmeanµs =0. Thedenoiseriseasilyderivedusing(5). describedasascalarchannel: Asameasureofthemeasurementnoiselevelandrecovery Fp =S /P +(σ /√P)Z , whereZ (0,1). accuracy,wedefinethesignal-to-noise-ratio(SNR)as t 0 t p p ∼N FortheBernoulliGaussiandistribution(6), SNR=10log10 E kAs0k2 /E kek2 Ftp ∼ǫN µs/P,(σs2+Pσt2)/P2 +(1−ǫ)N 0,σt2/P . 10log E (cid:0)s (cid:2)2 /E e(cid:3) 2 (cid:2) =10(cid:3)(cid:1)log ρ/σ2 , Scalar Qu(cid:0)antization: Next, we (cid:1)propose a uni(cid:0)form qua(cid:1)n- ≈ 10 k 0k k k 10 e (cid:0) (cid:2) (cid:3) (cid:2) (cid:3)(cid:1) (cid:0) (cid:1) tizerwithentropycoding,alsoknownasentropycodedscalar where ρ = ǫ/κ, and the signal-to-distortion-ratio (SDR) at quantization(ECSQ)[18]. iterationtas LetΨ(u)denotethecharacteristicfunctionofFp, itcan t UsingStDheRS(tE)e=qu1a0tiloong1in0(cid:0)(4E),(cid:2)kwse0kh2a(cid:3)v/eE(cid:2)kxt−s0k2(cid:3)(cid:1). bes|hΨo(wun)|th≤atǫexp −0.5 σs2+Pσt2 u2/P2 SDR(t)=10log10 ρ/ σt2−σe2 . +(1−ǫ)exp(cid:0)(cid:2)−0.5σ(cid:0)t2u2/P(cid:1)≤(cid:1)exp(cid:0)−0(cid:3).5σt2u2/P(cid:1) NotethattheBernoulliGaussian(cid:2) as(cid:0)sumption(cid:1)i(cid:3)n thispaperis isnearlyband-limited. Dueto thisproperty,itispossible to onlyforillustration,andourworkiseasilyextendedtoother develop a uniform quantizer of fp i.i.d. Fp, where the priordistributionsp . quantizationerrorvpisapproximattel∼ystatisticaltlyequivalent S0 t to a uniformly distributed noise Vp [ 0.5∆ ,0.5∆ ] uncorrelatedto Fp. Actually, a qutan∼tizaUtio−nbin sQize ∆ Q 3. MULTI-PROCESSORAMPFRAMEWORK t Q ≤ 2σ /√P willsufficeforvalidationofvp i.i.d. Vp [19]. t t ∼ t 3.1. CommunicationinMulti-ProcessorAMP The fusion center will receive the quantized data fp t ∼ i.i.d.Fp,andcalculatef = P fp i.i.d. F ,where Consider a system with P processors and one fusion cen- t t p=1 t ∼ t e P P P tnearm. EelaycAhppr,oacnedssoobrtapin∈sy{p1,=··A· ,pPs}+taekpes. TMhe/PprorocwedsuorefsAin, e Ft = Ftp =eFt+Vt, aendVt = eVtp. (7) 0 Xp=1 Xp=1 (1)—(3)canthenberewritteninadistributedmanner: e e Applyingthecentrallimittheorem,V approximatelyfollows LocalComputation(LC)performedbyeachprocessorp: t (0,Pσ2)forlargeP,whereσ2 =∆2/12. zpt =yp−Apxt+(1/κ)ηt′(ft−1)zpt−1, ENntropyQCoding and OptimumQ Bit RQate: Let pi be the probabilitythatFpfallsintothei-thquantizationbin.Theen- fp =x /P +(Ap)Tzp. t t t t tropyofquantizedFp, Fp, isH = p log (p )[20], t t Q − i i 2 i GlobalComputation(GC)performedbythefusioncenter: P 1In order to calculate eachezp , the fusion center also needs to send P t+1 ft = ftp, ηt′(ft), andxt+1 =ηt(ft). ηnit′c(aftti)ontocaolslttihsenpegrolicgeisbsloercs.omThpiasreisdawsicthaltahra,taonfdttrhaenscmoritrteisnpgoandviencgtocro.mmu- Xp=1 thatis, the sensors need H bits on averageto presenteach toalltheprocessors. Thecorrespondingcommunicationcost Q elementinftptothefusioncenter,whichisachievablethrough isalsonegligiblecomparedwiththatofcommunicatingftp. entropycoding[20]. e Inratedistortion(RD)theory[20],wearegivenalength- 3.4. DynamicProgramming(DP-MP-AMP) nrandomsequenceY = Y n i.i.d. Y,andourgoal n { n,i}i=1 ∼ While back-trackingis a usefulheuristic, it is possible for a istoidentifyareconstructionsequenceY = Y n that n { n,i}i=1 givencodingbudgetRperelement,totalnumberofAMPit- canbeencodedatlowrate whilethedisbtortionbd(Yn,Yn) = erationsT,andinitialnoiselevelσ2 inthescalarchannelto n1 id(Yn,i,Yn,i) (e.g., squared error distortion) bebtween compute the coding rate allocation0s among the AMP itera- thePinput and reconstruction sequences is small. RD theory tionsthatminimizethefinalMSE,σ2 . b T,D hascharacterizedthefundamentalbest-possibletrade-offbe- Todoso,notethatwecanevaluateσ2 offlineandhence tween the distortion D = d(Y ,Y ) and coding rate R(D), t,C n n obtain the number of iterations required to reach the steady which is called the rate distortion function. The RD func- b state, which would be a reasonable choice for T. Second, tionR(D)canbecomputednumerically(cf.Blahut[21]and recallingthenewSEequationin(8),σ2 dependsonσ2 Arimoto[22]). Fortheuniformquantizerthatyieldsaquanti- t,D t−1,D andσ2,whichisafunctionofR ,thecodingrateallocatedin zationMSEofσ2 withacodingrateH bitsperelement,the Q t Q Q thet-thiteration.Therefore,wecanrewriteσ2 asfollows: RDfunctionwillgiveabitrateR(D =σ2)<H ,whichis t,D Q Q achievablethroughvectorquantization[18]. σ2 =f (σ2 ,R )=f (σ2 ,R ,R ) t,D 1 t−1,D t 2 t−2,D t−1 t (9) New SE Equation: For both ECSQ and RD-based vector = =f (σ2,R , ,R ,R ), quantization that lead to a quantization MSE of σ2, the fu- ··· t 0 1 ··· t−1 t Q sNio(n0,c1e)n.teTrhweinllehwavdeenFeotis=erSan0d+SqEeσqt2u+atiPonσbQ2eZeco,mwehereZe ∼ {th1a,Tt2i,s·R,··gi,vT=en}.Rσ02D,,emσnoT2itn,iDinmgiiszFinoTgn(lRyσ)2a=fufno{crRtio1an,·g·oiv·fe,nRRtRTfoc≥rant0b:∈e ηtQ(Ft)=E S0 S0+ σt2+PσQ2Z =Ft and Pfortm=1ulattedasthe}followingoptimTiz,Dationproblem: h (cid:12) q i σt2+C1u=rreσnee2t+ly(,1w/κe)oEnhlyη(cid:12)(cid:12)tQc(cid:16)onSs0id+erqcoσmt2p+rePsseσioQ2nZe(cid:17)oef−fStp0.i2W.h(e8n) Since σ2FmTi(siRni)nσcTr2e,Dasi=ngFmwTi(itRnh)σfT2(σ02,,Rit1i,s··e·as,yRtTo)v.erify(1th0e) broadcast from the fusion center to the P processors is al- t,D t−1,D followingrecursiverelationship: lowed in the network topology, the communication cost of sending x – even uncompressed – is smaller than that of min σ2 = min f min σ2 ,R = , communictatingtheP vectorsfp.Weareconsideringthecase FT(R) T,D 0≤RT≤R 1(cid:18)FT−1(R−RT) T−1,D T(cid:19) ··· t wherebroadcastisnotallowedinourongoingwork. whichmakestheproblemsolvablethroughdynamicprogram- ming(DP). To implement DP, we need to discretize (R) into 3.3. OnlineBack-tracking(BT-MP-AMP) T F R , ,R Ω: T R =R ,whereΩ= R(1), , Letσt2,C andσt2,Ddenotetheσt2obtainedbycentralizedAMP R{(S1)··w·ithRT(∈s) = RP(st=11)t/(S }1), s 1,{ ,S·.··In (4) and MP-AMP (8), respectively. In order to reducecom- thisp}aper,wesetthebit−rateresol−ution∆∀R∈={R/·(·S· }1)= municationwhilemaintaininghighfidelity,wefirstconstrain 0.1bitsperelement.Then,wecreateanS T arrayΣ−,with σt2,D sothatitwillnotdeviatemuchfromσt2,C,andthende- theelementinthes-throw(s 1, ,S×)andt-thcolumn termine the minimumcoding rate requiredin each iteration. (t 1, ,T ) denoted as∈σ{2(s·,·t·), s}toring the optimal Thiscanbedonethroughanonlineback-trackingalgorithm, valu∈eo{f σ·2·· wh}en a totalof R(Ds) bits perelementare used t,D whichwenameBT-MP-AMPandpresentbelow. inthefirsttiterations.Bydefinitionofσ2(s,t),wehave Ineachiterationt,beforequantizingfp,wefirstcompute D σt2+1,C for the next iteration. Then wetfind the maximum σD2(s,t)=r∈{1m,2i,n···,s}f1(cid:16)σD2(r,t−1),R(s−r+1)(cid:17), (11) quantizationMSEσ2 allowedsothattheratioσ2 /σ2 Q t+1,D t+1,C andthefirstcolumnofelementsinΣisobtainedby: doesnotexceedsomeconstant,providedthattherequiredbit rσa2tewdeoecsonnsottruecxtcteheedcsoormreesptohnredsihnogldq.uaBnatiszeedr.onthe obtained σD2(s,1)=f1(cid:16)σ02,R(s)(cid:17), ∀s∈{1,2,··· ,S}. (12) Q After obtainingΣ, the optimalvalue of σ2 , by definition, NotethattheSEin(8)isonlyanapproximation,andwe T,D isσ2(S,T). Meanwhile,toobtaintheoptimalbitallocation donotknowthetruevalueofσ2 inthecurrentiteration.To D t,D strategy,weneedanotherS T arrayRtostoretheoptimal better predict σ2 , we use σ2 = zp 2/M, which is a × t+1,D t,D k tk bitrateRDP(s,t)thatisallocatedatiterationtwhenatotalof σgot2,oDd,eesatcimhaptroorcfeosrsoσrt2,pDs[e8n,d9s],tbthoecsocmalpaurtekzσptt2k+21,tDo.tTheoofubstiaoinn Rto(sB)Tb-iMtsPp-eArMelPe,mwenetnaarmeuestehdeipnrtohpeofisersdtMtiPte-rAatMioPnsa.pSpirmoailcahr center,which thensendsthe scalar σˆ2 = P zp 2/M combinedwithDPasDP-MP-AMP. b t,D p=1k tk P (cid:161)3!4!$5.63) (cid:161)3!4!&5.63"! (cid:161)3!4"5.63#! $! . $! $! #& #& #& #! #! #! 12 -./0"& "& "& , + "! "! "! 789*:;<=>80.?@A B7+C.=DE<8D89*;*=F9.FG.16(cid:239)@A(cid:239)?@A & FE*=D;<.:8HI<*H.FG.,A(cid:239)@A(cid:239)[email protected]#6 & & B7+C.=DE<8D89*;*=F9.FG.,A(cid:239)@A(cid:239)?@A !!. " # $ % & ' ( ) !! " # $ % & ' ( ) L "! !! # % ' ) "! "# "% "' ") #! * * * ' . ' ' & & & D89*2% % % J=*.:;*8./J=*H.E8:.8<8#$ -BFBE77,*++=.DECC:;8..<==0.DD:=8KEEH*=<<IF88<9DD*H.88F.F99G.G**1.;;,6**=A=(cid:239)FF(cid:239)@[email protected](cid:239)..1,(cid:239)??6A@(cid:239)@(cid:239)A@@AA5A.-(cid:239)(cid:239)?3?@#@6AA #$ #$ " " " !". # $ % & ' ( ) !" # $ % & ' ( ) L "! ! # % ' ) "! "# "% "' ") #! * * * Fig.1. SDRandbitratesasfunctionsofiterationnumbert. (N=10,000,M=3,000,κ=0.3,µ =0,σ =1,SNR=20dB.) s s AsshowninFig. 1, BT-MP-AMPusesfewerthan6bits Table1. TotalbitsperelementofMP-AMP perelementineachiteration,morethan80%communication ǫ 0.03 0.05 0.10 savingscomparedwith 32-bitsingle-precisionfloating-point T 8 10 20 transmission, while achieving almost the same SDR’s as in BT-MP-AMP(RDprediction) 33.82 46.43 96.16 centralizedAMP.Ontheotherhand,therearecleargapsbe- BT-MP-AMP(ECSQsimulation) 36.09 49.19 101.50 DP-MP-AMP(RDprediction) 16 20 40 tweentheSDR’sofDP-MP-AMPandcentralizedAMPdur- DP-MP-AMP(ECSQsimulation) 18.04 22.55 45.10 ing the first few iterations, but they vanish quickly as t ap- proachesT,inreturnforover50%communicationreduction beyondthatprovidedbyBT-MP-AMP,asshowninTable1. 4. NUMERICALRESULTS NotealsothattheECSQimplementationofDP-MP-AMP has lower SDR’s than that predictedby DP results based on We evaluate BT-MP-AMP and DP-MP-AMP in an MP sys- theRDfunctionatthebeginning. Thisisbecausethe0.255- tem with P = 30 processors at SNR= 20 dB, where we bitsgaponlyholdsinthehighratelimit. However,duetothe set N = 10,000, M = 3,000, i.e., κ = 0.3, and generate robustness of SE to disturbances, and the increasingly high Bernoulli-Gaussiansequencess withǫ 0.03,0.05,0.1 , rates as t approachesT, the ECSQ implementationmatches 0 ∈ { } µ =0,andσ =1. thepredictedDPresultsatthelastiteration. s s WefirstevaluatetheSEequation(4)ofcentralizedAMP forthe threesparsity levels. As shownin Fig. 1, theyreach 5. CONCLUSION thesteadystateafterT =8,10,and20iterationsrespectively. Then,werunBT-MP-AMPandDP-MP-AMP,whereforthe In this paper, we proposed a multi-processor approximate latterthetotalratesareR=2T bitsperelementandtheRD- message passing framework with lossy compression. We functionmodelstherelationbetweenRtandσQ2. used a uniform quantizer with entropy coding to reduce AccordingtoRDtheory,inthehighratelimit,weshould communication costs, and reformulated the state evolution expect a gap of roughly 0.255 bits per element between the formalism while accounting for quantization noise. Com- entropy and RD function for a given distortion level [18]. bining the quantizers and modified state evolution equation, Therefore, in an implementationof DP-MP-AMP where we an onlineback-trackingapproachandanothermethodbased applyECSQ,we add0.255bitsperelementto theresultsin on dynamicprogrammingdetermine the coding rate in each eachiterationobtainedbyDP.Notethatthetwosolidcurves iterationbycontrollingtheinducederror. Thenumericalre- inthetopthreepanelsareobtainedthroughofflinecalculation sultssuggestthatourapproachescanmaintainahighsignal- andoptimization,andthetwodash-dottedcurvesareobtained to-distortion-ratio despite a significant and often dramatic throughAMPsimulations. reductionininter-processorcommunicationcosts. 6. REFERENCES [13] J.F.Mota,J.M.Xavier,P.M.Aguiar,andM.Puschel, “D-ADMM: A communication-efficient distributed al- [1] D. L. Donoho, “Compressed sensing,” IEEE Trans. gorithm for separable optimization,” IEEE Trans. Sig. Info.Theory,vol.52,no.4,pp.1289–1306,Apr.2006. Proc.,vol.61,no.10,pp.2718–2723,May2013. [2] E. J. Candes, J. K. Romberg, and T. Tao, “Stable sig- [14] P. Han, R. Niu, and Y. C. Eldar, “Modifieddistributed nal recoveryfrom incomplete and inaccurate measure- iterative hard thresholding,” in IEEE Int. Conf. on ments,” Comm. Pure Appl. Math., vol. 59, no. 8, pp. Acoust., Speech, and Sig. Proc. (ICASSP), 2015, pp. 1207–1223,Mar.2006. 3766–3770. [3] J. Mota, J. Xavier, P. Aguiar, and M. Puschel, “Dis- [15] P. Han, R. Niu, and Y. C. Eldar, “Communication- tributedbasispursuit,” IEEETrans.Sig.Proc.,vol.60, efficientdistributedIHT,” inProc.SPARS,2015. no.4,pp.1942–1956,Apr.2012. [16] D. Koller and N. Friedman, Probabilistic graphical models:principlesandtechniques, MITPress,2009. [4] S. Patterson, Y. C. Eldar, and I. Keidar, “Distributed sparse signal recovery for sensor networks,” in IEEE [17] J.Tan,Y.Ma,andD.Baron, “Compressiveimagingvia Int.Conf.onAcoust.,Speech,andSig.Proc.(ICASSP), approximatemessagepassingwithwavelet-basedimage 2013,pp.4494–4498. denoising,”inIEEEGlobalConf.Sig.Info.Proc.(Glob- alSIP),2014,pp.424–428. [5] S. Patterson, Y. C. Eldar, and I. Keidar, “Distributed compressed sensing for static and time-varying net- [18] A.GershoandR.M.Gray, Vectorquantizationandsig- works,” IEEE Trans. Sig. Proc., vol. 62, no. 19, pp. nalcompression,vol.159,SpringerScience&Business 4931–4946,Oct.2014. Media,2012. [6] P. Han, R. Niu, M. Ren, and Y. C. Eldar, “Distributed [19] B.WidrowandI.Kolla´r, QuantizationNoise: Roundoff approximate message passing for sparse signal recov- Errorin DigitalComputation,SignalProcessing,Con- ery,” inIEEEGlobalConf.Sig.Info.Proc.(GlobalSIP), trol,andCommunications,CambridgeUniversityPress, 2014,pp.497–501. 2008. [7] D.L.Donoho,A.Maleki,andA.Montanari, “Message [20] T.M.CoverandJ.A.Thomas, Elementsofinformation passing algorithms for compressed sensing,” in Proc. theory, JohnWiley&Sons,2012. Natl.Acad.Sci.,Madrid,Spain,Sep.2009,vol.106,pp. 18914–18919. [21] R. E. Blahut, “Computation of channel capacity and rate-distortion functions,” IEEE Trans. Info. Theory, [8] D. L. Donoho, A. Maleki, and A. Montanari, “The vol.18,no.4,pp.460–473,Jul.1972. Noise-SensitivityPhaseTransitioninCompressedSens- [22] S. Arimoto, “An algorithmforcomputingthe capacity ing,” IEEETrans.Info.Theory,vol.57,pp.6920–6941, ofarbitrarydiscretememorylesschannels,”IEEETrans. Oct.2011. Info.Theory,vol.18,no.1,pp.14–20,Jan.1972. [9] M. Bayati and A. Montanari, “The Dynamicsof Mes- sage Passing on Dense Graphs, with Applications to Compressed Sensing,” IEEE Trans. Info. Theory, vol. 57,pp.764–785,Feb.2011. [10] J. Tan, Y. Ma, and D. Baron, “Compressive imaging via approximate message passing with image denois- ing,” IEEETrans. Sig.Proc., vol.63, no.8, pp.2085– 2092,Apr.2015. [11] J. T. Parker,P. Schniter,and V. Cevher, “Bilinear gen- eralizedapproximatemessagepassing,” arXivpreprint arXiv:1310.2632,2013. [12] A. MontanariandE. Richard, “Non-negativeprincipal component analysis: Message passing algorithms and sharp asymptotics,” arXiv preprint arXiv:1406.4775, 2014.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.