ebook img

Modeling and Simulation in Polymer Reaction Engineering: A Modular Approach PDF

295 Pages·2018·7.044 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Modeling and Simulation in Polymer Reaction Engineering: A Modular Approach

ModelingandSimulationinPolymer ReactionEngineering Modeling and Simulation in Polymer Reaction Engineering AModularApproach Klaus-DieterHungenbergandMichaelWulkow Authors AllbookspublishedbyWiley-VCHare carefullyproduced.Nevertheless,authors, Prof.Klaus-DieterHungenberg editors,andpublisherdonotwarrantthe Ortsstrasse135 informationcontainedinthesebooks, 69488Birkenau includingthisbook,tobefreeoferrors. Germany Readersareadvisedtokeepinmindthat statements,data,illustrations,procedural detailsorotheritemsmayinadvertently Dr.MichaelWulkow beinaccurate. Harry-Wilters-Ring27 26180Rastede LibraryofCongressCardNo.:appliedfor Germany BritishLibraryCataloguing-in-Publication CoverimagewasprovidedbyLisaKulot Data Acataloguerecordforthisbookis availablefromtheBritishLibrary. Bibliographicinformationpublishedby theDeutscheNationalbibliothek TheDeutscheNationalbibliothek liststhispublicationintheDeutsche Nationalbibliografie;detailed bibliographicdataareavailableonthe Internetat<http://dnb.d-nb.de>. ©2018Wiley-VCHVerlagGmbH&Co. KGaA,Boschstr.12,69469Weinheim, Germany Allrightsreserved(includingthoseof translationintootherlanguages).Nopart ofthisbookmaybereproducedinany form–byphotoprinting,microfilm,or anyothermeans–nortransmittedor translatedintoamachinelanguage withoutwrittenpermissionfromthe publishers.Registerednames,trademarks, etc.usedinthisbook,evenwhennot specificallymarkedassuch,arenottobe consideredunprotectedbylaw. PrintISBN:978-3-527-33818-4 ePDFISBN:978-3-527-68575-2 ePubISBN:978-3-527-68574-5 MobiISBN:978-3-527-68576-9 oBookISBN:978-3-527-68573-8 CoverDesign Grafik-DesignSchulz, Fußgönheim,Germany Typesetting SPiGlobal,Chennai,India PrintingandBinding Printedonacid-freepaper 10 9 8 7 6 5 4 3 2 1 v Contents Preface ix 1 Introduction 1 1.1 SpecialFeaturesofPolymers 1 1.2 StructuresinPolymersandTheirInfluenceonProcessingand ApplicationProperties 3 1.2.1 ChainLength,MolecularMass,Moments,andMeanValues 3 1.2.2 RheologicalProperties 6 1.2.3 ConstitutionalIsomers 7 1.2.4 ArchitecturalIsomers 9 1.2.5 Copolymers 11 1.3 SomeAnalyticalMethodsforModelValidation 13 1.4 DescriptionofPolymerProperties 15 1.4.1 ChemicalMasterEquations 17 1.4.2 ApproachestoPolymerProperties 21 1.4.3 StochasticandDeterministicSimulation 22 2 PolymerReactions 25 2.1 ModuleConcept 25 2.2 RateCoefficientsinPolymerizationReactions 26 2.3 BuildingMacromolecules 28 2.4 OnlyChain-FormingReactionsTakePlace,Step-Growth Polymerization 30 2.4.1 OnlyOneTypeofEndGroup:TheA−ACase,AReacting withA 31 2.4.2 TwoTypesofFunctionalGroupsAandBatOneMolecule;AReacts withB 40 2.4.3 IntroducingMonofunctionalMoleculestoControlDegreeof Polymerization 41 2.4.4 AdditionofaSecondBifunctionalMonomer,TwoFunctionalGroups onTwoDifferentMolecularSpecies 43 2.4.5 ReversibleReactions 49 2.5 Chain-GrowthPolymerization–InitiationRequired 58 2.5.1 LivingPolymerization–OnlyInitiationandPropagation(Chain Growth)TakePlace 59 vi Contents 2.5.1.1 MomentEquations 65 2.5.2 LivingPolymerizationTogetherwithChainDepropagation 68 2.5.3 InitiationandChainGrowthwithTransferReactions 75 2.5.4 InitiationandChainGrowthwithDeactivation 76 2.5.5 InitiationandChainGrowthwithChainTermination 77 2.5.5.1 TerminationbyDisproportionation 84 2.5.5.2 TerminationbyCombination 84 2.5.5.3 TransfertoMonomerorTransferAgent 86 2.5.5.4 TransfertoPolymer 87 2.5.5.5 PropagationwithChangeofCharacteristics 89 2.5.5.6 𝛽-Scission 90 2.6 Copolymerization 91 2.6.1 ConventionalDescriptionofCopolymerComposition 91 2.6.2 CharacteristicValuesfortheCharacterizationof Copolymers 94 2.6.3 ModulesfortheDescriptionofCopolymerization 97 2.6.4 ExtendedDescriptionofaCopolymer 101 2.6.5 DistributedCounters 104 2.7 NonlinearPolymerization 106 2.7.1 Branching;GraftPolymersviaCopolymerization, (Graftingthrough) 106 2.7.2 Cross-LinkingviaCopolymerization 107 2.7.3 NonlinearStructuresbyPolymerizationfromanExistingChain, Graftingfrom 109 2.7.4 Cross-LinkingofPreformedLinearMacromoleculesby Low-Molecular-MassCompounds 111 2.7.5 NonlinearStepGrowth 111 2.7.6 HigherDimensionalModels 113 2.8 ListofModules 114 2.8.1 ElementalKinetic 115 2.8.2 Combination(P,Q,T,A) 116 2.8.3 StatisticalDegradation(P,Q,T,A,B) 119 2.8.4 ChangeofCharacteristics(P,Q,A,B) 120 2.8.5 IntermolecularTransfer(P,Q,T,R,A) 121 2.8.6 CrossTransfer(P,Q,T,R,A) 123 2.8.7 Initiation(P,A,B,C,m) 124 2.8.8 Propagation(P,Q,M,A,m) 125 2.8.9 Depropagation(P,Q,M,A,B,m) 127 2.8.10 Transfer(P,Q,T,M) 128 2.8.11 Disproportionation(P,Q,R,T,A) 129 2.8.12 TransfertoPolymer(P,Q,T,R,A) 131 2.8.13 Scission(P,Q,T,A,B) 132 2.8.14 Cross-Linking(P,Q,T,A) 133 2.8.15 Flow(A ,A ) 134 1 2 2.8.16 PhaseTransfer(A ,A ) 135 1 2 2.8.17 ExampleSystem 135 Contents vii 3 ReactorsforPolymerizationProcesses 139 3.1 Introduction 140 3.2 Well-Mixed(Ideal)BatchReactor(BR) 141 3.2.1 AspectsoftheOverallMassBalance 143 3.2.2 HeatBalanceinaBatchReactor 144 3.2.3 PolymerPropertiesinBatchReactors 148 3.3 Semi-BatchReactor(Semi-BR) 149 3.4 TheContinuousStirredTankReactor(CSTR) 151 3.4.1 HomogeneousContinuousStirredTankReactor(HCSTR) 151 3.4.2 CascadeofHCSTR 156 3.4.3 SegregatedContinuousStirredTankReactor(SCSTR) 157 3.5 TubularReactors 158 3.5.1 PlugFlowReactor(PFR) 158 3.5.2 LaminarTubularReactor 159 3.6 NonidealReactorModelswithPartialBackmixing 159 3.7 ComparisonofReactors 161 4 PhasesandPhaseTransitions 163 4.1 TreatmentofVolumesandConcentrations 164 4.2 PhaseTransferModules 165 4.2.1 Two-FilmTheory 166 4.2.2 ExamplesforPhaseTransferSteps 169 4.2.2.1 EvaporationofaPureVolatileCompound 169 4.2.2.2 Vapor–LiquidEquilibriumofVolatileCompounds 170 4.2.2.3 AdsorptionofGaseousCompounds 170 4.2.2.4 VaporPressureAboveaPolymerSolution 172 4.2.2.5 DemixinginPolymerSolutions 174 4.2.3 Example:PhaseTransferDuringPolymerization;LivingAnionic PolymerizationofButadiene 175 4.2.4 SummarizingRemarkstothePhaseChangeModule 178 4.3 MultiphasePolymerizationSystems 179 4.3.1 SuspensionPolymerization 179 4.3.2 Precipitation/DispersionPolymerization 180 4.3.3 EmulsionPolymerization 181 5 NumericalMethods 193 5.1 Introduction 193 5.2 OrdinaryDifferentialEquations 195 5.2.1 ConsistencyandConvergence 195 5.2.2 Stability 197 5.2.3 ErrorControl 200 5.2.4 APracticalGuidetoODESolvers 205 5.2.4.1 ListofExplicitMethodsandSolversforNon-StiffODEs 206 5.2.4.2 ListofImplicitMethodsandSolversforStiffODEsandDifferential AlgebraicEquations(DAEs) 206 5.3 CountableSystemsofOrdinaryDifferentialEquations–CODEs 208 5.3.1 TheoreticalAspects 208 viii Contents 5.3.2 TheChain-LengthRange 209 5.3.3 InitializationofPolymerDistributions 211 5.3.4 ApproximationSchemes 212 5.4 EstimatingtheNumericalError 217 5.5 MonteCarloMethods 220 5.6 TheModelingCycle:DealingwithDifferentErrors 223 6 ParameterEstimation 227 6.1 Introduction:ForwardandInverseProblems 227 6.2 GeneralTheory 230 6.2.1 Introduction 230 6.2.2 TheMinimizationProblem 232 6.2.3 SensitivityAnalysis 235 6.3 CorrelatedParameters 236 6.3.1 Damping 237 6.3.2 EssentialDirections 238 6.4 Example:ParameterDependenciesandCondition 240 7 StyreneButadieneCopolymers 251 7.1 ModelDescription 251 7.2 ComponentsoftheModel 251 7.2.1 Low-Molecular-WeightCompounds 251 7.2.2 PolymerDistributions 252 7.2.3 SequenceDistributions 253 7.2.4 Counters 253 7.2.5 ComputationofCharacteristicValuesforCopolymersfrom Counters 254 7.3 ReactionModules 254 7.3.1 ChainInitiation 254 7.3.2 ChainPropagation 255 7.3.3 LiH-Elimination 256 7.3.4 ChainTransfer 256 7.3.5 Re-Initiationby1-Phenyl-1-LithiumEthane 257 7.3.6 BalanceSteps 257 7.4 ExemplarySimulations 258 7.5 ExemplificationoftheModelingCyclefortheStyrene–Butadiene Example 266 References 269 Appendix 277 Index 283 ix Preface Syntheticpolymershaveanoverwhelmingimportanceinourworld.Moreover, this does not just mean the economic importance but also the role synthetic polymers play to overcome the challenges and trends in our world. Polymers help meet the customer’s key needs in transportation, energy, housing, health, andsoon.Tofulfillthesechallenges,polymersmustbetailoredtothespecific needsintheirfinalapplication.Thecrucialtaskisthecombinationofthecorrect chemistryandthebestprocessinordertolinkthemonomerunitstoobtainan appropriatemicrostructureofthepolymer:composition,chainlengths,branch- ing,andsoon,aswellastheirrespectivedistributions. Mathematicalmodelshave,foralongtime[1,2],helpeddescribetheinterde- pendencybetweentheformationofmacromoleculesandtheirresultingstructure inaquantitativemannerandthusmayhelptheproductdevelopingchemistin thelaboratorywhendesigninganewpolymeraswellasthechemicalengineer whendesigningaplant.Moreover,modelsmayserveasalinkbetweenboth. Thus, the book addresses the interest of both chemists and engineers, those whoarealreadyadvancedpractitioners,andalsostudentsandthosestartingon thetopicofpolymerizationprocessmodeling. However,withthisbookwedonotwanttosupplythereaderwithready-to-use modelsforvariouscases,buttoenablehimorhertosetupownmodelssuitableto solvespecificproblems.Forthispurpose,wefollowamodular,unifyingapproach whichdiffersfrommostoftheworkdoneinthisfieldinthepast. Foreverypolymerizationmechanism,separatemodelsundercertainassump- tionsandrestrictionshavebeendevelopedandsuccessfullyused.So,modelsfor step-growth polymerization (see Section 2.4) for the description of polyesters, polyamides, polyurethanes, and so on, are in many cases restricted to yield averagesandmomentsofthemolecularmassdistribution(MWD)byassuming thevalidityofthemostprobableSchulz–Florydistributionforthecomputation of the MWD. For the large class of chain-growth polymerization (see Section 2.5),thereexistdifferentmodelsforionicpolymerization,livingpolymerization, radicalpolymerization,transition-metal-catalyzedpolymerization,andsoforth. Allofthemneedcertainassumptions.Eventheratioofratecoefficientscauses different ways to solve for the MWD. In the case of living anionic polymeriza- tion (see Section 2.5.1), this results in either a Poisson or the so-called Gold distribution depending on the ratio of initiation and propagation coefficient. In radical polymerization and copolymerization, a steady-state approximation x Preface for the active species is often assumed. Models for heterogeneous processes likeemulsion,dispersion,orprecipitationpolymerizationformanotherclassof modelsthatusuallydifferintheassumptionsformasstransfersteps. To overcome the limitations of these case-by-case models, we introduce a modular approach. By this, reaction schemes of typical polymer reactions will be designed by a combination of a set of elementary reaction steps [2] and the corresponding rate equations. These reaction schemes will be put into any kindofreactorsandtheircompartmentsandphases,wherethetransportrates for mass and energy between these compartments are again described by rate modules. InChapter1–asakindofappetizer–weaddresssomespecialfeaturesofpoly- merstructuresandprocessescomparedtolowmolecularcompounds,andgive some examples for the dependence of application properties on the molecular structureandsomehintstoanalyticalmethodstogetaninsightintothemolec- ularstructurewewanttodescribewithourmodels.Moreover,weintroducethe principles of deterministic modeling using differential-algebraic equations and stochasticmodelingusingMonteCarlomethods. Chapters 2 to 4 are devoted to model building using this modular approach. Here, model building means the translation of the expert knowledge of the chemistorengineeraboutthereactionmechanism,thekineticsandthermody- namics,andthereactorintomathematicalequationstoquantifythisknowledge. Chapter 2 describes the modules for the elementary reaction steps used to describe polymer reactions. Even though not necessary, in many cases we link themodulestothemoreconventionaldescriptiontofamiliarizethereaderwith this concept. With some examples the link between kinetics and structure is demonstrated. InChapter3,reactormodulesarederivedwithspecialemphasisonheatand massbalancesandresidencetimedistribution,togetherwithsomeinsightinto howstructuralpropertiesofthepolymersdependontheresidencetimedistri- butionofthereactor. The use of different phases and the transport between them is described in Chapter 4together with some simple chemical engineering approaches for the phasetransferingeneral,andhowtheseprinciplescanbeappliedtomultiphase polymersystemslikesuspension,precipitation,oremulsionpolymerization. Afterhavingsetupthemodel,weneedmethodstosolvetheequations.These are described in Chapter 5. However, this chapter does not describe the vari- ousmethodstosolveordinaryorpartialdifferentialequationsinalldetail,but highlightssomegenerallyimportantaspectslikeconvergence,stability,anderror control,andtriestogivesomehintstodetecterrors.Wealsodirecttheusersto deterministic(Section5.3)andstochasticalsolutions(Section5.5)ofthespecial equationsrelatedtopolymerkinetics. Essential for the quality of the modeling results is the quality of the model parameters.So,inChapter6 theproblemofparameterestimationisdiscussed especiallyinviewoftheill-posednatureoftheunderlyinginverseproblemand thedependencyofparameters.Anillustrativeexampleshowshowthenumber andkindofmeasurementsusedfortheestimationinfluencesthequalityofthe parameters. Preface xi Fortheexecutionofamodelingproject,weproposetofollowamodelingcycle (Section5.6)tocapturepossiblenumericalandmodelingerrorsinthemodel. AdetailedexamplesysteminChapter7demonstratesthevariousaspectsand techniquesofmodelingpolymerizationreactions. Wehopethatthesetechniquesforcethereadertosetuphisorherownmodels and simulations to solve specific problems, and so we explicitly abstain from a chapteronoptimization. Klaus-DieterHungenberg Birkenau,Germany MichaelWulkow 2017 Rastede,Germany

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.