MechanismsandGamesforDynamicSpectrumAllocation Presentingstate-of-the-artresearchintomethodsofwirelessspectrumallocationbased on game theory and mechanism design, this innovative and comprehensive book pro- vides a strong foundation for the design of future wireless mechanisms and spectrum markets. Prominent researchers showcase a diverse range of novel insights and approaches to the increasing demand for limited spectrum resources, with a consistent emphasis ontheoreticalmethods,analyticalresults,andpracticalexamples.Coveringfundamen- tal underlying principles, licensed spectrum sharing, opportunistic spectrum sharing, andwidertechnicalandeconomicconsiderations,thissingularbookwillbeofinterest to academic and industrial researchers, wireless industry practitioners, and regulators interestedinthefoundationsofcutting-edgespectrummanagement TansuAlpcanisaSeniorLecturerintheDepartmentofElectricalandElectronicEngi- neeringatTheUniversityofMelbourne,andco-authorofNetworkSecurity:ADecision andGame-TheoreticApproach(2011). Holger Boche is a Professor in the Institute of Theoretical Information Technology, TechnischeUniversitätMünchen,andaFellowoftheIEEE. MichaelL.Honig is a Professor in the Department of Electrical Engineering and Com- puterScienceatNorthwesternUniversity.HeisaFellowoftheIEEE. H. Vincent Poor is the Dean of Engineering and Applied Science and Michael Henry Strater University Professor of Electrical Engineering at Princeton University. He is a co-author of Principles of Cognitive Radio (2012), and a Fellow of the IET and the IEEE. “In the 21st century, the radio-frequency spectrum is a highly valuable resource. Its allocationisaneconomicproblem,requiringadeepunderstandingofwirelesscommu- nicationsengineering.Thisbook,withcontributionsfrommanyofthemostprominent experts, is a must-have for anyone interested in this new, exciting, inter-disciplinary field.” StephenHanly CSIRO-MacquarieUniversityChairinWirelessCommunications MacquarieUniversity,Australia Mechanisms and Games for Dynamic Spectrum Allocation TANSU ALPCAN TheUniversityofMelbourne HOLGER BOCHE TechnischeUniversitätMünchen MICHAEL L.HONIG NorthwesternUniversity H.VINCENT POOR PrincetonUniversity UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork. CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781107034129 (cid:13)c CambridgeUniversityPress2014 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2014 PrintedintheUnitedKingdombyTJInternationalLtd.PadstowCornwall AcataloguerecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData Mechanismsandgamesfordynamicspectrumallocation/[compiledby]TansuAlpcan, UniversityofMelbourne,HolgerBoche,TechnischeUniversitätMünchen, MichaelL.Honig,NorthwesternUniversity,H.VincentPoor,PrincetonUniversity pagescm Includesbibliographicalreferencesandindex. ISBN978-1-107-03412-9(hardback) 1. Wirelesscommunicationsystems–Management.2.Radiofrequency allocation.3.Signaltheory(Telecommunication)4.Gametheory.I. Alpcan,Tansu,1975-editorofcompilation. TK5103.2.M437 2013 (cid:48) 384.54 524015193–dc23 2013044140 ISBN978-1-107-03412-9Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication, anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Contents Contributors pagexvii Preface xxi PartITheoreticalFundamentals 1 1 Gamesandmechanismsfornetworkedsystems:incentivesandalgorithms 3 AnilKumarChorppath,TansuAlpcan,andHolgerBoche 1.1 Introduction 3 1.2 Systemmodel 6 1.3 Interferenceandutilityfunctionmodels 8 1.4 Pricingmechanismsformulti-carrierwirelesssystems 10 1.4.1 Netutilitymaximization 12 1.4.2 Alternativedesignerobjectives 15 1.5 Learninginpricingmechanisms 17 1.6 Auction-basedmechanisms 19 1.7 Discussionandopenproblems 28 References 28 2 CompetitioninwirelesssystemsviaBayesianinterferencegames 32 SachinAdlakha,RameshJohari,andAndreaGoldsmith 2.1 Introduction 32 2.2 StaticGaussianinterferencegames 35 2.2.1 Preliminaries 35 2.2.2 TheGaussianinterferencegamewithunknownchannelgains 36 2.2.3 BayesianGaussianinterferencegame 38 2.3 Sequentialinterferencegameswithincompleteinformation 41 2.3.1 Atwo-stagesequentialgame 41 2.3.2 Asequentialgamewithentry 44 2.4 Repeatedgameswithentry:thereputationeffect 45 2.4.1 ArepeatedSBGI-Egame 46 2.4.2 Sequentialequilibriumoftherepeatedgame 47 2.5 Conclusion 49 vi Contents 2.6 Appendix 50 References 55 3 Reactingtotheinterferencefield 57 MérouaneDebbahandHamidouTembine 3.1 Introduction 57 3.1.1 Spectrumaccessasagame 57 3.1.2 Cognitiveaccessgame 57 3.1.3 Mean-fieldgameapproach 58 3.1.4 Interferencemanagementinlarge-scalenetworks 58 3.1.5 Objectives 59 3.1.6 Structureofthechapter 59 3.1.7 Notations 60 3.2 Wirelessmodel 60 3.2.1 Channelmodel 61 3.2.2 Mobilitymodel 62 3.2.3 Path-lossmodel 62 3.2.4 Remainingenergydynamics 63 3.2.5 Queuedynamics 63 3.2.6 SINRmodel 63 3.3 Game-theoreticformulations 64 3.4 Reactiontotheinterferencefield 64 3.4.1 Introductiontomean-fieldgames 64 3.4.2 Theinterferencefield 67 3.5 Mean-fieldstochasticgame 67 3.5.1 Onagamewithone-and-halfplayer 68 3.5.2 Strategiesandpayoffs 68 3.5.3 Mean-fieldequilibrium 69 3.5.4 Structureoftheoptimalstrategy 69 3.5.5 Performance 70 3.5.6 Mean-fielddeterministicgame 70 3.5.7 Hierarchicalmean-fieldgame 71 3.6 Discussions 71 3.7 Conclusions 72 3.8 Openissues 72 Acknowledgements 73 References 73 4 Walrasianmodelforresourceallocationandtransceiverdesignin 75 interferencenetworks EduardA.JorswieckandRamiMochaourab 4.1 Consumertheory 76 Contents vii 4.1.1 Standardconsumertheory 77 4.1.2 Consumertheoryforutilityα−βx +γx x 79 1 1 2 4.1.3 Example1:Protectedandsharedbands 80 4.1.4 Example2:Two-userMISOinterferencechannel 85 4.1.5 Example3:Multi-carrierinterferencechannel 89 4.1.6 Discussionandcomparisonofconsumermodels 91 4.2 Walrasianmarketmodel 92 4.2.1 ExistenceofaWalrasianequilibrium 92 4.2.2 UniquenessoftheWalrasianequilibrium 94 4.2.3 Convergenceofatâtonnementprocess 95 4.2.4 EfficiencyofaWalrasianequilibrium 95 4.2.5 Example1:Two-userprotectedandsharedbands 96 4.2.6 Example2:Two-userMISOinterferencechannel 99 4.2.7 Example3:MCinterferencechannel 103 References 106 5 Powerallocationandspectrumsharinginwirelessnetworks:an 108 implementationtheoryapproach AliKakhbod,AshutoshNayyar,ShrutivandanaSharma,andDemosthenisTeneketzis 5.1 Introduction 108 5.1.1 Chapterorganization 109 5.2 Whatisimplementationtheory? 109 5.2.1 Gameforms/mechanisms 110 5.2.2 Implementationindifferenttypesofequilibria 111 5.2.3 Desirablepropertiesofgameforms 114 5.2.4 Keyresultsonimplementationtheory 115 5.3 NashimplementationforsocialwelfaremaximizationandweakPareto 118 optimality 5.3.1 Themodel(M ) 118 PSA 5.3.2 Thepowerallocationandspectrumsharingproblem 121 5.3.3 Constructingagameformforthedecentralizedpowerand 122 spectrumallocationproblem 5.3.4 Socialwelfaremaximizingpowerallocationinasingle 125 frequencyband 5.3.5 WeaklyParetooptimalpowerandspectrumallocation 127 5.3.6 InterpretingNashequilibrium 129 5.3.7 Otherapproachestopowerallocationandspectrumsharing 130 5.4 Revenuemaximization 131 5.4.1 Themodel 132 5.4.2 Impossibilityresultfromimplementationtheory 133 5.4.3 Purelyspectrumallocationproblem 133 5.4.4 Purelypowerallocationproblem 140 5.4.5 Othermodelsandapproachesonrevenuemaximization 140 viii Contents 5.5 Conclusionandreflections 141 References 142 6 Performanceandconvergenceofmulti-useronlinelearning 145 CemTekinandMingyanLiu 6.1 Introduction 145 6.2 Relatedwork 146 6.3 Problemformulationandpreliminaries 149 6.3.1 Factorsdeterminingthechannelquality/reward 149 6.3.2 Channelmodels 150 6.3.3 Thesetofoptimalallocations 151 6.3.4 Performancemeasure 153 6.3.5 Degreeofdecentralization 153 6.4 Mainresults 154 6.5 Achievableperformancewithnofeedbackandiidchannels 155 6.6 Achievableperformancewithpartialfeedbackandiidchannels 160 6.7 Achievableperformancewithpartialfeedbackandsynchronizationfor 167 iidandMarkovianchannels 6.7.1 AnalysisoftheregretofDLOE 170 6.7.2 Regretanalysisforiidchannels 172 6.7.3 RegretanalysisforMarkovianchannels 175 6.8 Discussion 179 6.8.1 Strategicconsiderations 179 6.8.2 Multipleoptimalallocations 180 6.8.3 Unknownsuboptimalitygap 182 Acknowledgements 183 References 183 7 Game-theoreticsolutionconceptsandlearningalgorithms 185 SamirM.PerlazaandSamsonLasaulce 7.1 Introduction 185 7.2 Ageneraldynamicspectrumaccessgame 186 7.3 Solutionsconceptsanddynamicspectrumaccess 187 7.3.1 Nashequilibrium 187 7.3.2 Epsilon–Nashequilibrium 193 7.3.3 Satisfactionequilibriumandefficientsatisfactionequilibrium 195 7.3.4 GeneralizedNashequilibrium 197 7.3.5 Coarsecorrelatedequilibriumandcorrelatedequilibrium 200 7.3.6 Robustequilibrium 202 7.3.7 Bayesianequilibriumandaugmentedequilibrium 204 7.3.8 Evolutionarystablesolutions 206
Description: