Mathematical Knowledge in Teaching Mathematics Education Library VOLUME 50 ManagingEditor A.J.Bishop,MonashUniversity,Melbourne,Australia EditorialBoard M.G.BartoliniBussi,Modena,Italy J.P.Becker,Illinois,U.S.A. M.Borba,RioClaro,Brazil B.Kaur,Singapore C.Keitel,Berlin,Germany G.Leder,Melbourne,Australia F.Leung,HongKong,China D.Pimm,Edmonton,Canada K.Ruthven,Cambridge,UnitedKingdom A.Sfard,Haifa,Israel Y.Shimizu,Tennodai,Japan O.Skovsmose,Aalborg,Denmark Forfurthervolumes: http://www.springer.com/series/6276 · Tim Rowland Kenneth Ruthven Editors Mathematical Knowledge in Teaching 123 Editors TimRowland KennethRuthven UniversityofCambridge UniversityofCambridge FacultyofEducation FacultyofEducation 184HillsRoad 184HillsRoad CB28PQCambridge CB28PQCambridge UnitedKingdom UnitedKingdom [email protected] [email protected] SeriesEditor: AlanJ.Bishop MonashUniversity Melbourne3800 Australia [email protected] ISBN978-90-481-9765-1 e-ISBN978-90-481-9766-8 DOI10.1007/978-90-481-9766-8 SpringerDordrechtHeidelbergLondonNewYork ©SpringerScience+BusinessMediaB.V.2011 Nopartofthisworkmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorby anymeans,electronic,mechanical,photocopying,microfilming,recordingorotherwise,withoutwritten permissionfromthePublisher,withtheexceptionofanymaterialsuppliedspecificallyforthepurpose ofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthework. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Contents 1 Introduction:MathematicalKnowledgeinTeaching . . . . . . . . 1 TimRowlandandKennethRuthven PartI ConceptualisingMathematicalKnowledgeinTeaching 2 ConceptualisingTeachers’MathematicalKnowledgeinTeaching . 9 MarilenaPetrouandMariaGoulding 3 KnowingandIdentity:ASituatedTheoryofMathematics KnowledgeinTeaching. . . . . . . . . . . . . . . . . . . . . . . . . 27 JeremyHodgen 4 ChangedViewsonMathematicalKnowledgeintheCourse ofDidacticalTheoryDevelopment:IndependentCorpus ofScientificKnowledgeorResultofSocialConstructions? . . . . . 43 HeinzSteinbring 5 Teaching Mathematics as the Contextual Application ofMathematicalModesofEnquiry . . . . . . . . . . . . . . . . . . 65 AnneWatsonandBillBarton 6 ConceptualisingMathematicalKnowledgeinTeaching . . . . . . . 83 KennethRuthven PartII UnderstandingtheCulturalContextofMathematical KnowledgeinTeaching 7 The Cultural Location of Teachers’ Mathematical Knowledge: Another Hidden Variable in Mathematics EducationResearch? . . . . . . . . . . . . . . . . . . . . . . . . . . 99 PaulAndrews 8 How Educational Systems and Cultures Mediate Teacher Knowledge: ‘Listening’ in English, French andGermanClassrooms . . . . . . . . . . . . . . . . . . . . . . . . 119 BirgitPepin v vi Contents 9 ModellingTeachinginMathematicsTeacherEducation andtheConstitutionofMathematicsforTeaching . . . . . . . . . 139 JillAdlerandZainDavis 10 Audit and Evaluation of Pedagogy: Towards aCultural-HistoricalPerspective . . . . . . . . . . . . . . . . . . . 161 JulianWilliams 11 TheCulturalDimensionofTeachers’MathematicalKnowledge . . 179 AndreasJ.StylianidesandSeánDelaney PartIII Building Mathematical Knowledge in Teaching byMeansofTheorisedTools 12 TheKnowledgeQuartetasanOrganisingFrameworkfor DevelopingandDeepeningTeachers’MathematicsKnowledge . . 195 FayTurnerandTimRowland 13 LearningtoTeachMathematicsUsingLessonStudy . . . . . . . . 213 DoloresCorcoranandSandyPepperell 14 Using Theories to Build Kindergarten Teachers’MathematicalKnowledgeforTeaching . . . . . . . . . . 231 DinaTirosh,PessiaTsamir,andEstherLevenson 15 Teachers’StoriesofMathematicalSubjectKnowledge: AccountingfortheUnexpected . . . . . . . . . . . . . . . . . . . . 251 JulieRyanandJulianWilliams 16 BuildingMathematicalKnowledgeinTeachingbyMeans ofTheorisedTools . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 JoséCarrillo 17 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 KennethRuthvenandTimRowland AuthorIndex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 SubjectIndex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 Contributors JillAdlerUniversityoftheWitwatersrand,Parktown,Johannesburg2196, SouthAfrica;andKing’sCollegeLondon,UK.,[email protected] PaulAndrewsFacultyofEducation,UniversityofCambridge,Cambridge CB28PQ,UK,[email protected] BillBartonDepartmentofMathematics,UniversityofAuckland,Auckland1142, NewZealand,[email protected] JoséCarrilloFacultyofEducationalSciences,UniversityofHuelva,Huelva E21007,Spain,[email protected] DoloresCorcoranSt.Patrick’sCollege,DublinCityUniversity,Dublin9,Ireland, [email protected] ZainDavisSchoolofEducation,UniversityofCapeTown,Rondebosch7701, CapeTown,SouthAfrica,[email protected] SeánDelaneyMarinoInstituteofEducation,ColáisteMhuire,Dublin9,Ireland, [email protected] MariaGouldingInstituteofEducationalTechnology,TheOpenUniversity, MiltonKeynesMK76AA,UK,[email protected] JeremyHodgenDepartmentofEducationandProfessionalStudies,King’s CollegeLondon,Franklin-WilkinsBuilding(WaterlooBridgeWing),London SE19NH,UK,[email protected] EstherLevensonSchoolofEducation,TelAvivUniversity,Tel-Aviv69978, Israel,[email protected] BirgitPepinFacultyofTeacherEducation,Sør-TrøndelagUniversityCollege, Trondheim7004,Norway,[email protected] SandyPepperellDepartmentofEducation,FroebelCollege,Roehampton University,LondonSW155PJ,UK,[email protected] vii viii Contributors MarilenaPetrouInstituteofEducationalTechnology,TheOpenUniversity, MiltonKeynesMK76AA,UK,[email protected] TimRowlandFacultyofEducation,UniversityofCambridge,Cambridge CB28PQ,UK,[email protected] KennethRuthvenFacultyofEducation,UniversityofCambridge,Cambridge CB28PQ,UK,[email protected] JulieRyanInstituteofEducation,ManchesterMetropolitanUniversity, ManchesterM202RR,UK,[email protected] HeinzSteinbringFakultätfürMathematik,UniversitätDuisburg-Essen,Essen D-45117,Germany,[email protected] AndreasJ.StylianidesFacultyofEducation,UniversityofCambridge, CambridgeCB28PQ,UK,[email protected] DinaTiroshSchoolofEducation,TelAvivUniversity,Tel-Aviv69978,Israel, [email protected] PessiaTsamirSchoolofEducation,TelAvivUniversity,Tel-Aviv69978,Israel, [email protected] FayTurnerFacultyofEducation,UniversityofCambridge,CambridgeCB28PQ, UK,[email protected] AnneWatsonDepartmentofEducation,UniversityofOxford,OxfordOX26PY, UK,[email protected] JulianWilliamsSchoolofEducation,UniversityofManchester,Manchester M139PL,UK,[email protected] Chapter 1 Introduction: Mathematical Knowledge in Teaching TimRowlandandKennethRuthven Background:TheTopicandtheBook This book examines the issue of mathematical subject knowledge in teaching. There is now widespread agreement that the quality of primary and secondary school mathematics teaching depends crucially on the subject-related knowledge that teachers are able to bring to bear on their work. However, when discussion startstofocusinonthespecificformsandfunctionsofmathematicalknowledgefor teaching,thereismuchlessconcurrence.Thereisnow,however,aprevalentsugges- tionthateffectiveteachingcallsfordistinctiveformsofsubject-relatedknowledge and thinking. These are particularly live issues for policy and practice because of the longstanding difficulties in recruiting teachers who are confident and conven- tionallywellqualifiedinmathematics,andbecauseofrisingconcernthatteaching ofthesubjecthasnotadaptedsufficientlytothechangingcircumstancesofschools andtheirstudents.Theissuestobeexaminedinthisbookare,then,ofconsiderable significanceinaddressingworld-wideaspirationstoraisestandardsofteachingand learning in mathematics through developing more effective approaches to charac- terising,assessinganddevelopingmathematicalknowledgeforteachingwithinthe professionalworkforce. Public discussion often proceeds on the basis either that teachers need only have such mathematical competence as they are expected to develop in their stu- dents,orthatitmayalsobebeneficialforthemtohavesomewhat‘moreadvanced’ knowledgeofmathematicsthanthesubjectmattertheyareteaching.However,itis now clear that such perspectives fail to do justice to the situation. Rather, a num- ber of Anglo-American, Continental-European and East-Asian traditions point to particular forms of subject-related knowledge that underpin effective teaching of mathematics and to distinctive mechanisms for developing such knowledge. An important objective of this book, then, is to develop a critical synthesis of differ- ent perspectives on mathematical knowledge for and in teaching and to establish B T.Rowland( ) FacultyofEducation,UniversityofCambridge,Cambridge CB28PQ,UK e-mail:[email protected] T.Rowland,K.Ruthven(eds.),MathematicalKnowledgeinTeaching,Mathematics 1 EducationLibrary50,DOI10.1007/978-90-481-9766-8_1, (cid:2)C SpringerScience+BusinessMediaB.V.2011