Low-Power High-Speed ADCs for Nanometer CMOS Integration ANALOGCIRCUITSANDSIGNALPROCESSINGSERIES ConsultingEditor:MohammedIsmail.OhioStateUniversity TitlesinSeries: LOWPOWERUWBCMOSRADARSENSORS Paulino,Nuno,Goes,João,SteigerGarção,Adolfo ISBN:978-1-4020-8409-6 THEGM/IDDESIGNMETHODOLOGYFORCMOSANALOGLOWPOWERINTEGRATEDCIRCUITS Jespers,PaulG.A. ISBN-10:0-387-47100-6 SUBSTRATENOISECOUPLINGINRFICS Helmy,Ahmed,Ismail,Mohammed ISBN:978-1-4020-8165-1 CIRCUITANDINTERCONNECTDESIGNFORHIGHBIT-RATEAPPLICATIONS Veenstra,Hugo,Long,JohnR. ISBN:978-1-4020-6882-9 HIGH-RESOLUTIONIF-TO-BASEBANDSIGMADELTAADCFORCARRADIOS Silva,PauloG.R.,Huijsing,JohanH. ISBN:978-1-4020-8163-7 MULTI-BANDRFFRONT-ENDSWITHADAPTIVEIMAGEREJECTION ADECT/BLUETOOTHCASESTUDY Vidojkovic,V.,vanderTang,J.,Leeuwenburgh,A.,vanRoermund,A.H.M. ISBN:978-1-4020-6533-0 SILICON-BASEDRFFRONT-ENDSFORULTRAWIDEBANDRADIOS Safarian,Aminghasem,Heydari,Payam ISBN:978-1-4020-6721-1 DESIGNOFHIGHVOLTAGEXDSLLINEDRIVERSINSTANDARDCMOS Serneels,Bert,Steyaert,Michiel ISBN:978-1-4020-6789-1 BASEBANDANALOGCIRCUITSFORSOFTWAREDEFINEDRADIO Giannini,Vito,Craninckx,Jan,Baschirotto,Andrea ISBN:978-1-4020-6537-8 HIGH-LEVELMODELINGANDSYNTHESISOFANALOGINTEGRATEDSYSTEMS Martens,EwoutS.J.,Gielen,Georges ISBN:978-1-4020-6801-0 CMOSMULTI-CHANNELSINGLE-CHIPRECEIVERSFORMULTI-GIGABITOPT... Muller,P.,Leblebici,Y. ISBN978-1-4020-5911-7 ANALOG-BASEBANDARCHITECTURESANDCIRCUITS FORMULTISTANDARDANDLOW-VOLTAGEWIRELESSTRANSCEIVERS Mak,PuiIn,U,Seng-Pan,Martins,RuiPaulo ISBN:978-1-4020-6432-6 FULL-CHIPNANOMETERROUTINGTECHNIQUES Ho,Tsung-Yi,Chang,Yao-Wen,Chen,Sao-Jie ISBN:978-1-4020-6194-3 ANALOGCIRCUITDESIGNTECHNIQUESAT0.5V Chatterjee,S.,Kinget,P.,Tsividis,Y.,Pun,K.P. ISBN-10:0-387-69953-8 SWITCHED-CAPACITORTECHNIQUESFORHIGH-ACCURACYFILTERANDADC... Quinn,P.J.,Roermund,A.H.M.v. ISBN978-1-4020-6257-5 LOW-FREQUENCYNOISEINADVANCEDMOSDEVICES vonHaartman,M.,Östling,M. ISBN978-1-4020-5909-4 ULTRALOWPOWERCAPACITIVESENSORINTERFACES Bracke,W.,Puers,R.(etal.) ISBN978-1-4020-6231-5 BROADBANDOPTO-ELECTRICALRECEIVERSINSTANDARDCMOS Hermans,C.,Steyaert,M. ISBN978-1-4020-6221-6 CMOSSINGLECHIPFASTFREQUENCYHOPPINGSYNTHESIZERSFORWIRELESS MULTI-GIGAHERTZAPPLICATIONS Bourdi,Taoufik,Kale,Izzet ISBN:978-1-4020-5927-8 CMOSCURRENT-MODECIRCUITSFORDATACOMMUNICATIONS Yuan,Fei ISBN:0-387-29758-8 Forothertitlespublishedinthisseries,goto www.springer.com/series/7381 Zhiheng Cao • Shouli Yan Low-Power High-Speed ADCs for Nanometer CMOS Integration ABC Dr.ZhihengCao Asst.Prof.ShouliYan UniversityofTexas,Austin CockrellSchoolofEngineering Dept.Electrical&ComputerEngineering 1UniversityStation AustinTX78712 ACESBldg. USA [email protected] [email protected] ISBN978-1-4020-8449-2 e-ISBN978-1-4020-8450-8 LibraryofCongressControlNumber:2008928688 AllRightsReserved (cid:1)c 2008SpringerScience+BusinessMediaB.V. Nopartofthisworkmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorby anymeans,electronic,mechanical,photocopying,microfilming,recordingorotherwise,withoutwritten permissionfromthePublisher,withtheexceptionofanymaterialsuppliedspecificallyforthepurposeof beingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthework. Printedonacid-freepaper. 9 8 7 6 5 4 3 2 1 springer.com Preface Thisisabookaboutthedesignandimplementationdetailsofhigh-speedanalog-to- digitalconverters(ADCs)inadvanceddigitalCMOSprocessesthatachievelower power consumption for a given speed and resolution than conventional designs, througharchitecturalandcircuitinnovationsthattakeadvantageofuniquefeatures in nanometer CMOS processes. It includes a chapter for a phase lock loop (PLL) clock multiplier which has also been designed using innovative circuit techniques and successfully tested. It has been integrated for generating sampling clock to oneADC. Chapter1analyzestheobstaclesandopportunitiesinvolvedindevelopingADCs and necessary clocking circuits in nanometer digital CMOS processes, such as reduced transistor gain and linearity, increased switching speed, and increased siliconarea.FivemostcommonlyusedADCarchitecturesarereviewed.Chapter2 describesa1.2V52mW210MS/s10-bitADCin130nmdigitalCMOSforappli- cation to digital (low) IF receivers, whose advantage over the direct-conversion as ahighlyintegratedreceiverarchitecturehasbeenshown[33,35].Usingaproposed capacitornetworkimplementedwithsmallvalueinterconnectcapacitorswhichre- places the power hungry resistor ladder in conventional sub-ranging ADCs, and proposedoffsetcancelingcomparators,itachieves>70dBcSFDRupto100MHz inputfrequencywhileconsumingonly52mW,whichisthelowestreportedtodate for >200 MS/s 10-bit ADCs. The active area is 0.38 mm2 including decoupling capswhichisalsocompetitivewithotherexisting10-bitpipelineADCs.Chapter3 presentsa1.2V32mW1.25GS/s6-bitADC(applicationsincludeseriallinks,disk drives and UWB receivers) implemented in 130 nm digital CMOS [5]. This ADC usesanewtypeofarchitecturethatcombinesflashandSARtoachievethelowest powerconsumption,6-bit>1GS/sADCimplementationreportedinopenliterature todate.TheSARinternalclockfrequencyis2.5GHz,whichisthefastesteverused foraSARADC.Becauseitdoesnotrequireanycalibrationsteporpostprocessing, andhasthesamelatencyasmostflashADC,itcanbeadirectdrop-inreplacement of6-bitflashADCsinexistingapplicationtolowerpowerbymorethan5times[30]. Chapter4detailstheintegratedclock-multiplierPLLtogeneratesamplingandinter- nalclockforthe1.25GS/sADC.Measurementshows0.4-ps-rmsjitter(integrated v vi Preface from3kHzto300MHzoffset)for≥2.5GHzoutputsandtuningrangefrombelow 1 GHz up to 3 GHz. A new loop filter structure based on a sample-reset phase to voltage converter and a Gm-C filter enables phase error preamplification to lower PLLin-bandnoisewithoutincreasingloopfiltercapacitorsize. ThisbookisbaseduponmyPh.D.dissertation;itincludesmoredetailsandmea- surementresultsforeachproject,andacompletelynewchapterwhichdescribesthe 10-bit two-step ADC whose measurement finished only after I received my Ph.D. degree,andisnotincludedinmydissertation.Becausethisbookfocusesonhigh- speedADCs,itdoesnotincludeachapterforanearlyprojectofmyPh.D.research —a14mW125MS/s1.25MHzsignalbandwidth84dBdynamicrange∆Σmod- ulatorin0.25µmCMOS[4]. These projects I finished during my Ph.D. study in the University of Texas at Austinwouldneverhavebeenpossiblewithoutthehelpandkindnessofmanyin- dividuals. First of all, I would like to express my gratitude to my Ph.D. advisor, ProfessorShouliYanforhisconfidenceinmeandenthusiasmfortheresultsofmy work. He gave me countless insightful suggestions and guidance, and at the same timealsoallowedmefreedomtopursuemyownideas.IamgratefultoMarcoCorsi forgivingmetheopportunitytodoasix-monthinternatTexasInstrumentsin2007. IsincerelythankBobPayneforhisguidanceduringmyintern.Thehighstandardin robustnessofadesignwhichhekeepsanddemandswasveryinspirational.Iwased- ucatedthatdesigningeventhesimplestcircuitisnotatrivialtask.Iwouldalsolike to thank Yunchu Li, Richard Schreier, Steve Rose, Will Yang and other engineers atAnalogDevicesfortheirguidanceanddiscussionsduringmyinternshipin2006. Ilearnedmanyimportantprinciplesandfundamentalconceptsaboutanalog/mixed- signaldesignthroughtakingMr.EricSwanson’scourseatUTinaveryearlystage ofmystudy,towhichIamintenselygrateful.Ibenefitedalotfrommyfellowstu- dents, especially Tongyu Song and Chaoming Zhang. Their attention todetail and willingness to share information allowed me to spot several catastrophic mistakes in my layout design which would certainly have lead to failure of the test chips. TheirfriendshipmademystayatUTenjoyable.Theprojectsincludedinthisbook wouldneverhavebeencompletedinatimelymannerwithoutthekindnessandhelp ofKenAgeeandKennethHodsonatTexasInstrumentswhoallowedmetousethe labstheymanage,andspenttheirtimehelpingmewiththetestsetupandsoldering thetinychipontotheboardaftermyfailedattempts.Iappreciatethehelpfromthe staffs in the computer engineering research center, especially Andrew Kieschnick whoasoursystemadministratormaintainedaprimitivebutverycomfortableCAD environment (Windows XP + VNC to Linux servers, Cadence custom flow with UMCfoundrydesignkit+spectreRF+Calibre)withvirtuallynodowntimewhich enabledefficientchipdevelopment(infact,fasterandlessstressfulthanmanypro- prietaryCADsystemsIusedduringmyinternshipinindustry)andothercomputing tasks.FinallyIwouldliketothankmyparentswhoencouragedandsupportedme duringmystudy. Contents Preface............................................................ v ListofTables ...................................................... ix ListofFigures ..................................................... xi 1 Introduction................................................... 1 1.1 Motivations ............................................... 1 1.1.1 Analog-to-DigitalConverters .......................... 1 1.1.2 ClockGeneration .................................... 3 1.2 AReviewofExistingADCArchitectures ...................... 3 1.2.1 Flash .............................................. 3 1.2.2 Pipeline ............................................ 4 1.2.3 Subranging ......................................... 5 1.2.4 SuccessiveApproximation ............................ 6 1.2.5 ∆ΣADCs........................................... 8 2 A52mW10b210MS/sTwo-StepADCforDigitalIFReceivers in130nmCMOS .............................................. 11 2.1 Background ............................................... 11 2.2 ArchitectureandCircuits .................................... 12 2.2.1 CapacitorSamplingNetwork/5b-DAC .................. 15 2.2.2 ConversionTimingDiagram........................... 17 2.2.3 SamplingClockSkewCalibration ...................... 18 2.2.4 6bFineADC ....................................... 20 2.2.5 OffsetCancelingComparator .......................... 25 2.2.6 5bCoarseADC ..................................... 25 2.3 ExperimentalResults ....................................... 27 2.3.1 TestSetup .......................................... 28 2.3.2 CharacterizationoftheClockDelayLine ................ 31 2.3.3 ADCMeasurementResults............................ 32 2.4 Summary ................................................. 39 vii viii Contents 3 A32mW1.25GS/s6b2b/StepSARADCin130nm DigitalCMOS ................................................. 41 3.1 Background ............................................... 41 3.2 Architecture ............................................... 42 3.3 EnablingCircuits........................................... 46 3.3.1 FastSettlingCapacitor-Network........................ 46 3.3.2 Flip-FlopBypassSARLogic .......................... 48 3.3.3 DigitalBackgroundOffsetCorrection ................... 50 3.3.4 High-SpeedLow-HysteresisComparator ................ 52 3.3.5 FloorPlanandLayoutConsiderations................... 55 3.4 TestingIssues.............................................. 57 3.4.1 CapturingADCOutputData........................... 57 3.4.2 SerialConfigurationInterface.......................... 59 3.4.3 TestSetup .......................................... 60 3.4.4 EvaluationBoardDesign.............................. 61 3.5 ExperimentalResults ....................................... 62 3.5.1 SummaryofResultsandDiscussions.................... 62 3.6 PerformanceSummaryandComparison ....................... 65 3.7 Summary ................................................. 66 4 A 0.4 ps-RMS-Jitter 1–3 GHz Clock Multiplier PLL UsingPhase-NoisePreamplification .............................. 69 4.1 Introduction ............................................... 69 4.2 Phase-LockLoop(PLL)..................................... 71 4.2.1 Phase-to-VoltageConverterandLoopFilter .............. 71 4.2.2 PhaseErrorPreamplification........................... 74 4.2.3 ConstantLoop-BandwidthBiasing...................... 75 4.3 VCOandClockBuffers ..................................... 76 4.3.1 PhaseNoiseandPowerConsumptionProgrammability .... 76 4.3.2 VCOBufferwith50%DutyCycleOutput ............... 78 4.3.3 ReferenceClockReceiver ............................. 80 4.4 ExperimentalResults ....................................... 80 4.4.1 TestSetup .......................................... 80 4.4.2 MeasurementResultsandDiscussions................... 82 4.4.3 Comparison withExistingPLLs withSimilar Output FrequencyRange .................................... 83 4.5 Summary ................................................. 87 5 ConclusionsandFutureDirections............................... 89 References......................................................... 91 AbouttheAuthors.................................................. 95 List of Tables 2.1 Performancesummary ....................................... 38 2.2 Comparison with other recently published 10-bit CMOS pipelineADCs.............................................. 38 3.1 Multiplexeroperation ........................................ 49 3.2 Performancesummary ....................................... 66 3.3 Comparisonwithotherpublished≥1GS/s6-bitCMOSADCs ..... 66 4.1 Comparison with other published PLLs with similar output frequencyrange............................................. 87 ix
Description: