ArakM.Mathaiand HansJ.Haubold LinearAlgebra DeGruyterTextbook 07 PM Also of Interest ProbabilityandStatistics.ACourseforPhysicistsandEngineers ArakM.Mathai,HansJ.Haubold,2017 ISBN978-3-11-056253-8,e-ISBN(PDF)978-3-11-056254-5, e-ISBN(EPUB)978-3-11-056260-6 AdvancedCalculus.DifferentialCalculusandStokes’Theorem Pietro-LucianoBuono,2016 ISBN978-3-11-043821-5,e-ISBN(PDF)978-3-11-043822-2, e-ISBN(EPUB)978-3-11-042911-4 ProbabilityTheoryandStatisticalApplications. AProfoundTreatiseforSelf-Study PeterZörnig,2016 ISBN978-3-11-036319-7,e-ISBN(PDF)978-3-11-040271-1, e-ISBN(EPUB)978-3-11-040283-4 ComplexAnalysis.AFunctionalAnalyticApproach FriedrichHaslinger,2017 ISBN978-3-11-041723-4,e-ISBN(PDF)978-3-11-041724-1, e-ISBN(EPUB)978-3-11-042615-1 FunctionalAnalysis.ATerseIntroduction GerardoChacón,HumbertoRafeiro,JuanCamiloVallejo,2016 ISBN978-3-11-044191-8,e-ISBN(PDF)978-3-11-044192-5, e-ISBN(EPUB)978-3-11-043364-7 07 PM Arak M. Mathai and Hans J. Haubold Linear Algebra | A Course for Physicists and Engineers 07 PM MathematicsSubjectClassification2010 15-01,15A03,15A04,15A05,15A09,15A15,15A16,15A18,15A21,15A63 Authors Prof.DrArakM.Mathai Prof.DrHansJ.Haubold McGillUniversity UnitedNationsOfficeforOuterSpaceAffairs DepartmentofMathematicsandStatistics ViennaInternationalCentre 805SherbrookeSt.West P.O.Box500 Montreal,QCH3A2K6 1400Vienna Canada Austria [email protected] [email protected] ISBN978-3-11-056235-4 e-ISBN(PDF)978-3-11-056250-7 e-ISBN(EPUB)978-3-11-056259-0 ThisworkislicensedundertheCreativeCommonsAttribution-NonCommercial-NoDerivatives4.0 License.Fordetailsgotohttp://creativecommons.org/licenses/by-nc-nd/4.0/. LibraryofCongressCataloging-in-PublicationData ACIPcatalogrecordforthisbookhasbeenappliedforattheLibraryofCongress. BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheInternetathttp://dnb.dnb.de. ©2017ArakM.Mathai,HansJ.Haubold,publishedbyWalterdeGruyterGmbH,Berlin/Boston. Thebookispublishedwithopenaccessatwww.degruyter.com. Typesetting:VTeXUAB,Lithuania Printingandbinding:CPIbooksGmbH,Leck Coverimage:Pasieka,Alfred/SciencePhotoLibrary ♾Printedonacid-freepaper PrintedinGermany www.degruyter.com 07 PM Basicpropertiesofvectors,matrices,determinants,eigenvaluesandeigenvectorsare discussed.Then,applicationsofmatricesanddeterminantstovariousareasofsta- tisticalproblemssuchasprincipalcomponentsanalysis,modelbuilding,regression analysis,canonicalcorrelationanalysis,designofexperimentsetc.areexamined.Ap- plications of vector/matrix derivatives in the simplification of Taylor expansions of functionsofmanyrealscalarvariablesareconsidered.Jacobiansofmatrixtransfor- mationsofreal-valuedscalar functionsofmatrixargument, maxima/minimaprob- lems,optimizationsoflinearforms,quadraticforms,bilinearformswithlinearand quadraticconstraintsareexamined.Matrixsequencesandseries,convergenceofma- trix series etc. and applications in physical sciences, chemical sciences, social sci- ences,input-analysis,linearprogrammingproblem,non-linearleastsquaresanddy- namicprogrammingproblemsetc.arestudiedinthisbook. Eachtopicismotivatedbyreal-lifesituationsandeachconceptisillustratedwith examplesandcounterexamples.Thebookisclass-testedsince1999.Itiswrittenwith theexperienceofteachingfiftyyearsinvariousuniversitiesaroundtheworld.Thefirst threeModulesoftheCentreforMathematicalandStatisticalSciences(CMSS)arecom- binedtomakethisbook.TheseModulesareusedforintensiveundergraduatemathe- maticstrainingcampsofCMSS.Eachcampisa10-dayintensivetrainingcoursewith 40hoursoflecturesand40hoursofproblem-solvingsessions.Thirtysuchcampsare alreadyconductedbyCMSS.Onlyhighschoollevelmathematicsisassumed.Thebook iswrittenasaself-studymaterial.Eachtopicisbroughtfromfundamentalstothese- niorundergraduatetograduatelevel.Usualdoubtsofthestudentsonvarioustopics areansweredinthebook. Since 2004, the material in this book was made available to UN-affiliated Re- gionalCentresforSpaceScienceandTechnologyEducation,locatedinIndia,China, Morocco, Nigeria, Jordan, Brazil, and Mexico (http://www.unoosa.org/oosa/en/ ourwork/psa/regional-centres/index.html). Since 1988 the material was taken into account for the development of educa- tion curricula in the fields of remote sensing and geographic information systems, satellitemeteorologyandglobalclimate,satellitecommunications,spaceandatmo- spheric science, and global navigation satellite systems (http://www.unoosa.org/ oosa/en/ourwork/psa/regional-centres/study_curricula.html). Assuchthematerialwasconsideredtobeaprerequisiteforapplications,teach- ing,andresearchinspacescienceandtechnology.Itwasalsoaprerequisiteforthe nine-monthspost-graduatecoursesinthefivedisciplinesofspacescienceandtech- nology,offeredbytheRegionalCentresonanannualbasistoparticipantsfromall194 MemberStatesoftheUnitedNations. Since1991,wheneversuitableattheresearchlevel,thematerialinthisbookwas utilizedinlecturesinaseriesofannualworkshopsandfollow-upprojectsoftheso- OpenAccess.©2017ArakM.Mathai,HansJ.Haubold,publishedbyDeGruyter. Thisworkislicensed undertheCreativeCommonsAttribution-NonCommercial-NoDerivatives4.0License. https://doi.org/10.1515/9783110562507-201 07 PM VI | calledBasicSpaceScienceInitiativeoftheUnitedNations(http://www.unoosa.org/ oosa/en/ourwork/psa/bssi/index.html). Assuchthematerialwasconsideredaprerequisiteforteachingandresearchin astronomyandphysics. RIPPLESIGHTINGThecosmicdanceoftwoblackholeswarpedspacetimeasthe pair spiraled inward and merged, creating gravitational waves (illustration below). AdvanceLaserInterferometerGravitational-WaveObservatory(LIGO)detectedthese ripples,producedbyblackholeseightand14timesthemassofthesun,onDecem- ber26,2015.Einstein’stheoryofgeneralrelativitywas100yearsoldin2015.Ithasbeen veryimportantinapplicationssuchasGPS(GNSS),andtremendouslysuccessfulin understandingastrophysicalsystemslikeblackholes.Gravitationalwaves,whichare ripplesinthefabricofspaceandtimeproducedbyviolenteventsinthedistantuni- verse–forexample,bythecollisionoftwoblackholesorbythecoresofsupernova explosions–werepredictedbyAlbertEinsteinin1916asaconsequenceofhisgeneral theoryofrelativity.Gravitationalwavesareemittedbyacceleratingmassesmuchin thesamewayelectromagneticwavesareproducedbyacceleratingcharges,suchas radiowavesradiatedbyelectronsacceleratinginantennas.AstheytraveltoEarth, these ripples in the space–time fabric carry information about their violent origins andaboutthenatureofgravitythatcannotbeobtainedbytraditionalastronomical observationsusinglight.Gravitationalwaveshavenowbeendetecteddirectly.Scien- 07 PM | VII tistsdo,however,havegreatconfidencethattheyexistbecausetheirinfluenceona binarypulsarsystem(twoneutronstarsorbitingeachother)hasbeenmeasuredac- curatelyandisinexcellentagreementwiththepredictions.Directlydetectinggravi- tationalwaveshasconfirmedEinstein’spredictioninanewregimeofextremerela- tivisticconditions,andopenapromisingnewwindowintosomeofthemostviolent andcataclysmiceventsinthecosmos.TheGNSSeducationcurriculaprovidesoppor- tunitiestoteachnavigationanddoresearchinastrophysics(basicspacescience).The developmentoftheeducationcurricula(illustratedabove)startedin1988atUNHead- quartersinNewYork,thespecificGNSScurriculumemanatedonlyin1999afterthe UNISPACEIIIConference,heldatandhostedbytheUnitedNationsatVienna. Usuallystudentsfromotherareas,otherthanmathematics,areintimidatedby seeingtheoremsandproofs.Hencenosuchphraseas“theorem”isusedinthebook. Mainresultsarecalled“results”andarewritteninboldsothatthematerialwillbe user-friendly. Thisbookcanbeusedasatextbookforabeginningundergraduatelevelcourse onvectors,matricesanddeterminants,andtheirapplications,forstudentsfromall disciplines. 07 PM 07 PM Preface Thebasicmaterialinthisbookoriginatedfromacoursegivenbythefirstauthorat theUniversityofTexasatElPasoin1998–1999academicyear.Studentsfrommath- ematics, engineering, biology, economics, physics and chemistry were in the class. Thetextbookassignedtothecoursedidnotsatisfythestudentsfromanyofthedis- ciplines,includingmathematics.HenceDrMathaistarteddevelopingacoursefrom fundamentals, assuming no background, with lots of examples and counter exam- ples taken from day to day life. All sections of the students enjoyed the course. Dr Mathaigavecoursesoncalculusandlinearalgebraandforbothofthesecourseshe developedhisownmaterialsincloseinteractionwithstudents.TheElPasoexperi- mentwasinitiallyforonesemesteronlybut,duetothepopularity,extendedtomore semesters. During2000to2006thesenotesweredevelopedintoCMSSModulesandbased ontheseModules,occasionalcoursesweregivenforteachersandstudentsatvarious levelsinKerala,India,asperrequestsfromteachers.From2007onwardCMSSbecame aDepartmentofScienceandTechnology,GovernmentofIndiacentreformathemat- icalandstatisticalsciences.Modulesinotherareaswerealsodevelopedduringthis period,andby2014,tenModulesweredeveloped. AsaLifeMemberofCMSS,thesecondauthorisanactiveparticipantofallpro- gramsatCMSS,includingtheundergraduatemathematicstrainingcamps,Ph.Dtrain- ingetc.andheisalsoafrequentvisitortoCMSStoparticipateinandcontributeto variousactivities. Chapter1isdevotedtoallbasicpropertiesofvectorsasorderedsetofrealnum- bers,Eachdefinitionismotivatedbyreal-lifeexamples.Afterintroducingmajorprop- ertiesofvectorswiththerealelements,vectorsinthecomplexdomainareconsidered andmorerigorousdefinitionsareintroduced.Chapter1endswithGram–Schmidtor- thogonalizationprocess. Chapter2dealswithmatrices.Again,alldefinitionsandpropertiesareintroduced fromreal-lifesituations.Rolesofelementarymatricesandelementaryoperationsin solvinglinearequations,checkingconsistencyoflinearsystems,checkinglinearde- pendenceofvectors,evaluatingrankofamatrix,canonicalreductionsofquadratic and bilinear forms, triangularizations and diagonalizations of matrices, computing inversesofmatricesetc.arehighlighted. Chapter3dealswithdeterminants.Anaxiomaticdefinitionisintroduced.Various typesofexpansionsofdeterminantsaregiven.Roleofelementarymatricesinevalu- atingdeterminantsishighlighted.ThischaptermeltsintoChapter4oneigenvalues andeigenvectorsandtheirproperties. Chapters 5 and 6 are on applications of matrices and determinants to various disciplines.Applicationstomaxima/minimaproblems,constrainedmaxima/minima, optimizationoflinear,quadraticandbilinearforms,withlinearandquadraticcon- OpenAccess.©2017ArakM.Mathai,HansJ.Haubold,publishedbyDeGruyter. Thisworkislicensed undertheCreativeCommonsAttribution-NonCommercial-NoDerivatives4.0License. https://doi.org/10.1515/9783110562507-202 08 PM X | Preface straintsareconsidered.Foreachoptimization,atleastonepracticalproceduresuch asprincipalcomponentsanalysis,canonicalcorrelationanalysis,regressionanalysis etc.isillustrated.SomeadditionaltopicsarealsodevelopedinChapter6.Matrixpoly- nomials,matrixsequencesandseries,convergence,normsofmatrices,singularvalue decompositionofmatrices,simultaneousreductionofmatricestodiagonalformsetc. arealsodiscussedinChapter6. A.M.Mathai 14thMarch2017 H.J.Haubold 08 PM