ebook img

Lecture 4. Checking Model Adequacy PDF

29 Pages·2005·0.11 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Lecture 4. Checking Model Adequacy

Statistics 514: Checking Model Adequacy Lecture 4. Checking Model Adequacy Montgomery: 3-4, 15-1.1 Fall, 2005 Page 1 Statistics 514: Checking Model Adequacy Model Checking and Diagnostics (cid:15) Model Assumptions 1 Model is correct 2 Independent observations 3 Errors normally distributed 4 Constant variance − − yij = (y:: + (yi: y::)) + (yij yi:) yij = y^ij + (cid:15)^ij observed = predicted + residual (cid:15) Note that the predicted response at treatment i is y^ij = y(cid:22)i: (cid:15) Diagnostics use predicted responses and residuals. Fall, 2005 Page 2 Statistics 514: Checking Model Adequacy Diagnostics (cid:15) Normality – Histogram of residuals – Normal probability plot / QQ plot – Shapiro-Wilk Test (cid:15) Constant Variance – Plot (cid:15)^ij vs y^ij (residual plot) – Bartlett’s or Levene’s Test (cid:15) Independence – Plot (cid:15)^ij vs time/space – Plot (cid:15)^ij vs variable of interest (cid:15) Outliers Fall, 2005 Page 3 Statistics 514: Checking Model Adequacy Constant Variance (cid:15) 2 In some experiments, error variance ((cid:27) ) depends on the mean response i E(y ) = (cid:22) = (cid:22) + (cid:28) : ij i i So the constant variance assumption is violated. (cid:15) Size of error (residual) depends on mean response (predicted value) (cid:15) Residual plot – Plot (cid:15)^ij vs y^ij – Is the range constant for different levels of y^ij (cid:15) More formal tests: – Bartlett’s Test – Modified Levene’s Test. Fall, 2005 Page 4 Statistics 514: Checking Model Adequacy Bartlett’s Test (cid:15) 2 2 2 H : (cid:27) = (cid:27) = : : : = (cid:27) 0 1 2 a (cid:15) 2 q Test statistic: (cid:31) = 2:3026 0 c where P − 2 − a − 2 q = (N a)log10Sp i=1(ni 1)log10Si P 1 a − −1 − − −1 c = 1 + ( (n 1) (N a) ) i 3(a−1) i=1 2 2 and S is the sample variance of the ith population and S is the pooled i p sample variance. (cid:15) 2 2 Decision Rule: reject H0 when (cid:31)0 > (cid:31)(cid:11);a−1. Remark: sensitive to normality assumption. Fall, 2005 Page 5 Statistics 514: Checking Model Adequacy Modified Levene’s Test (cid:15) For each fixed i, calculate the median mi of yi1; yi2; : : : ; yin . i (cid:15) Compute the absolute deviation of observation from sample median:[ j − j d = y m ij ij i for i = 1; 2; : : : ; a and j = 1; 2; : : : ; ni, (cid:15) Apply ANOVA to the deviations: dij (cid:15) 2 2 Use the usual ANOVA F-statistic for testing H0 : (cid:27)1 = : : : = (cid:27)a. Fall, 2005 Page 6 Statistics 514: Checking Model Adequacy options ls=80 ps=65; title1 ’Diagnostics Example’; data one; infile ’c:\saswork\data\tensile.dat’; input percent strength time; proc glm data=one; class percent; model strength=percent; means percent / hovtest=bartlett hovtest=levene; output out=diag p=pred r=res; proc sort; by pred; symbol1 v=circle i=sm50; title1 ’Residual Plot’; proc gplot; plot res*pred/frame; run; proc univariate data=diag normal noprint; var res; qqplot res / normal (L=1 mu=est sigma=est); histogram res / normal; run; Fall, 2005 Page 7 Statistics 514: Checking Model Adequacy run; proc sort; by time; symbol1 v=circle i=sm75; title1 ’Plot of residuals vs time’; proc gplot; plot res*time / vref=0 vaxis=-6 to 6 by 1; run; symbol1 v=circle i=sm50; title1 ’Plot of residuals vs time’; proc gplot; plot res*time / vref=0 vaxis=-6 to 6 by 1; run; Fall, 2005 Page 8 Statistics 514: Checking Model Adequacy Diagnostics Example Sum of Source DF Squares Mean Square F Value Pr > F Model 4 475.7600000 118.9400000 14.76 <.0001 Error 20 161.2000000 8.0600000 Corrected Total 24 636.9600000 Levene’s Test for Homogeneity of strength Variance ANOVA of Squared Deviations from Group Means Sum of Mean Source DF Squares Square F Value Pr > F percent 4 91.6224 22.9056 0.45 0.7704 Error 20 1015.4 50.7720 Bartlett’s Test for Homogeneity of strength Variance Source DF Chi-Square Pr > ChiSq percent 4 0.9331 0.9198 Fall, 2005 Page 9 Statistics 514: Checking Model Adequacy Non-constant Variance: Impact and Remedy (cid:15) Does not affect F-test dramatically when experiment is balanced (cid:15) Why concern? – Comparison of treatments depends on MSE – Incorrect intervals and comparison results (cid:15) Variance-Stabilizing Transformations – Common transformations p p p x, log(x), 1=x, arcsin( x), and 1= x – Box-Cox transformations (cid:12) 1. approximate the relationship (cid:27)i = (cid:18)(cid:22)i , then the transformation is 1−(cid:12) X 2. use maximum likelihood principle (cid:3) Distribution often more “normal” after transformation Fall, 2005 Page 10

Description:
Statistics 514: Checking Model Adequacy. Lecture 4. Checking . Model Adequacy. Identify Box-Cox Transformation Using Data: Approximate Method.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.