Quan Quan Introduction to Multicopter Design and Control Introduction to Multicopter Design and Control Quan Quan Introduction to Multicopter Design and Control 123 Quan Quan Department ofAutomatic Control Beihang University Beijing China ISBN978-981-10-3381-0 ISBN978-981-10-3382-7 (eBook) DOI 10.1007/978-981-10-3382-7 LibraryofCongressControlNumber:2017932434 ©SpringerNatureSingaporePteLtd.2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeor part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway, andtransmissionorinformationstorageandretrieval,electronicadaptation,computersoftware, orbysimilarordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthis publication does not imply, even in the absence of a specific statement, that such names are exemptfromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationin thisbookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernor the authors or the editors give a warranty, express or implied, with respect to the material containedhereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremains neutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerNatureSingaporePteLtd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,Singapore To my parents Preface The flight is always the dream of mankind. The kite was invented in China, possiblyasfar backtothefifth century.Beginningwiththelastyearsofthe 15thcentury,LeonardodaVinciwroteaboutandsketchedmanydesignsfor flyingmachinesandmechanisms,includingornithopters,fixed-winggliders, rotorcraft, and parachutes. On December 17, 1903, the Wright brothers invented and built the world’s first successful airplane and made the first controlled, powered, and sustained heavier-than-air human flight. Since 1903, in the following one hundred years, many types of aircraft emerged. However, not too many people tried to pilot and enjoy their flying. Aircraft and pilots were still mysterious until small and micro multicopters were approaching consumers via the Radio Controlled (RC) toy market. This mainly duetothehugeimprovementontheuser experienceviatheirsalient features:ease-of-use,highreliability,andeasymaintainability.Ithardlyfinds an aircraft as simple as multicopters. They do make more and more people reallypilotandenjoyflying.BesidesasanRCtoy,multicoptersdemonstrate other commercial applications as drones, including surveillance, search, and rescue missions. So far, multicopters have taken and consolidated their dominanceinthemarketofsmallaircraft.NomatterdefinedasanRCtoyor a drone, the multicopter is definitely an appropriate research target for stu- dents. This is because students have a chance to experience all phases from design to flight testing within a short time. One more reason is that students canreadandinteractwiththeopen-sourcecodeofmulticopterstounderstand the underline principle. As an outcome of a course developed at Beihang University (Beijing UniversityofAeronauticsandAstronautics,BUAA),thisbookisintendedas a textbook or introductory guide for senior undergraduate and graduate students, and as a self-study book for practicing engineers involved in multicopters.Withtheintentionofcoveringmostdesignphasesonhardware and algorithms of multicopters, it has fifteen chapters which is divided into five parts, including multicopter airframe and propulsion system design, modeling,perception,control,anddecision.Thisbookcanalsobeusedfora supplementaryreadingmaterialforotherunmannedflyingsystems.Itaimsto organize the design principles adopted in engineering practice into a disci- pline and to emphasize the power of fundamental concepts. This book is featured with four salient characteristics. vii viii Preface (1) Basic and practical. The most contents related to multicopters are self-contained, aiming at making this book understandable to readers with the background of Electronic Engineering (EE). For such a pur- pose, the components are introduced starting from their functions and key parameters. The introduction to the design process starts with the principle, while the modeling section starts with the theoretical mechanics. The state estimation section starts with the measurement principle of sensors. Before talking about the control, the notions of stability and controllability are introduced. In addition, most of basic and practical methods are presented. These methods are closely related to open-source autopilots which are often used now. (2) Comprehensive and systematic. This book hopes to give a complete pictureofmulticoptersystemsratherthanasinglemethodortechnique. Very often, the role of a single method or technique is not sufficient to meettheusersrequirementsortosolveapracticalcomplexproblem.On the other hand, improving other related methods or techniques will reduce thedifficultyinasingle method.Forexample, theimprovement of the state estimation performance or the mechanical structure can avoid dealing with delay or vibration as a control problem. Through this, some complex controller design can be avoided. For an under- graduate student, basic knowledge has been obtained, such as mathe- matics, aerodynamics, materials, structures, electronics, filtering, and controlalgorithms,whichcorrespondtonumerouscourses.Thisbookis hoped to combine them together to lay foundations for full stack developers. The preparation and writing of this book have suffered me a lot. Fortu- nately, the Software and Control Lab, I stayed as a student (I have been staying here as a faculty since 2010), started to support the research on multicopters since about 2007. Ruifeng Zhang and I devoted ourselves to building quadcopters then. This made me almost witness the gold develop- ment period of small multicopters. Moreover, fortunately, public documents are shared selflessly by developer teams of open-source autopilots, such as APM and PX4, and numerous technique dissertations and papers are con- tributed by scholars all over the world. More importantly, this book could neverhavebeenwrittenwithoutthesupportandassistancefrommystudents from BUAA ReliableFlightControl Grouphttp://rfly.buaa.edu.cn/,whichis a part of Software and Control Lab. Deep thanks go to graduate students Jinrui Ren, Zhiyao Zhao, Guang-Xun Du, Xunhua Dai, Zibo Wei, Heng Deng, Dongjie Shi, Yangguang Cai, Jiang Yan, Hongxin Dong, Jianing Fu, Zhenglong Guo, Jing Zhang, Yao Luo, Shuaiyong Zheng, Baihui Du and Xiaowei Zhang for material preparation, chapter revision, and simulations. IwouldliketothankmycolleagueProf.ZhiyuXi,graduatestudentsUsman ArifandHannaTereshchenko,andundergraduatestudentKunXiaofortheir commentsandhoursoftirelessproofreading.IwouldliketothankProf.Wei Huo,Prof.DaweiLiatBeihangUniversity,Mr.YunYuatDJI-Innovations, Preface ix Dr. Liang Zhu at AVIC Information Technology Co., Ltd for providing the valuablesuggestions.Thisbookhasbeenusedinmanuscriptforminseveral courses at Beihang University and National University of Defense Tech- nology,andthefeedbackfromstudentshasbeeninvaluable.Finally,Iwould like to thank Mr. Xiang Guo for the traditional Chinese-style illustrations at the beginning of each chapter. Beijing, China Quan Quan December 2016 Contents 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Concepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.1 Classification of Commonly Used Small Aircraft. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.2 Unmanned Aerial Vehicle and Model Aircraft. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Remote Control and Performance Evaluation. . . . . . . . . 6 1.2.1 Remote Control of a Multicopter . . . . . . . . . . . 6 1.2.2 Performance Evaluation. . . . . . . . . . . . . . . . . . 10 1.2.3 Bottleneck. . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.3 History of Multicopters. . . . . . . . . . . . . . . . . . . . . . . . 13 1.3.1 The First Stage (Before 1990): Dormancy Period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3.2 The Second Stage (1990–2005): Growing Period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.3.3 The Third Stage (2005–2010): Development Period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.3.4 The Fourth Stage (2010–2013): Activity Period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.3.5 The Fifth Period (2013–): Booming Period . . . . 19 1.3.6 Conclusion Remark. . . . . . . . . . . . . . . . . . . . . 21 1.4 The Objective and Structure of the Book. . . . . . . . . . . . 21 1.4.1 Objective. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.4.2 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Part I Design 2 Basic Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2 Airframe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2.1 Fuselage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2.2 Landing Gear. . . . . . . . . . . . . . . . . . . . . . . . . 36 2.2.3 Duct. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.3 Propulsion System . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.3.1 Propeller . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.3.2 Motor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 xi xii Contents 2.3.3 Electronic Speed Controller . . . . . . . . . . . . . . . 43 2.3.4 Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.4 Command and Control System. . . . . . . . . . . . . . . . . . . 47 2.4.1 RC Transmitter and Receiver. . . . . . . . . . . . . . 47 2.4.2 Autopilot. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.4.3 Ground Control Station. . . . . . . . . . . . . . . . . . 51 2.4.4 Radio Telemetry. . . . . . . . . . . . . . . . . . . . . . . 51 2.5 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3 Airframe Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.1 Configuration Design . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.1.1 Airframe Configuration. . . . . . . . . . . . . . . . . . 59 3.1.2 Aerodynamic Configuration. . . . . . . . . . . . . . . 66 3.2 Structural Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.2.1 Design Principles of Airframe . . . . . . . . . . . . . 67 3.2.2 Anti-Vibration Consideration . . . . . . . . . . . . . . 67 3.2.3 Noise Reduction Consideration. . . . . . . . . . . . . 70 3.3 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4 Modeling and Evaluation of Propulsion System. . . . . . . . . . 73 4.1 Problem Formulation. . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.2 Propulsion System Modeling . . . . . . . . . . . . . . . . . . . . 75 4.2.1 Propeller Modeling. . . . . . . . . . . . . . . . . . . . . 75 4.2.2 Motor Modeling. . . . . . . . . . . . . . . . . . . . . . . 77 4.2.3 Electronic Speed Controller Modeling. . . . . . . . 79 4.2.4 Battery Modeling . . . . . . . . . . . . . . . . . . . . . . 80 4.3 Performance Evaluation. . . . . . . . . . . . . . . . . . . . . . . . 80 4.3.1 Solution to Problem 1. . . . . . . . . . . . . . . . . . . 80 4.3.2 Solution to Problem 2. . . . . . . . . . . . . . . . . . . 83 4.3.3 Solution to Problem 3. . . . . . . . . . . . . . . . . . . 83 4.3.4 Solution to Problem 4. . . . . . . . . . . . . . . . . . . 84 4.4 Test Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.5 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.6 Appendix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.6.1 Procedure to Obtain Thrust Coefficient and Torque Coefficient . . . . . . . . . . . . . . . . . . 89 4.6.2 Procedure to Obtain the Motor Equivalent Voltage and Current . . . . . . . . . . . . . . . . . . . . 91 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Part II Modeling 5 Coordinate System and Attitude Representation . . . . . . . . . 99 5.1 Coordinate Frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5.1.1 Right-Hand Rule . . . . . . . . . . . . . . . . . . . . . . 101
Description: