ebook img

Introduction to Mathematical Modeling and Chaotic Dynamics PDF

363 Pages·2013·5.985 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to Mathematical Modeling and Chaotic Dynamics

Water Science Nollet T H I R D E D I T I O N De Gelder Third Edition Handbook of Water Analysis Extensively revised and updated, Handbook of Water Analysis, Third Edition provides current analytical techniques for detecting various compounds in water samples. Maintaining the detailed and accessible style of the previous editions, this third edition demonstrates water sampling and preservation methods by enumerating different ways to measure chemical and radiological characteris- tics. It gives step-by-step descriptions of separation, residue determination, and clean-up techniques for a variety of freshwater and saltwater. See What’s New in the Third Edition • Includes five new chapters covering ammonia, nitrates, nitrites, and petroleum hydrocarbons, as well as organoleptical and algal analysis methodology • Compares older methods still frequently used with recently developed protocols, and examines future trends • Features a new section regarding organoleptical analysis of water acknowledging that ultimately the consumers of drinking water have the final vote over its quality with respect to odor, flavor, and color The book covers the physical, chemical, and other relevant properties of various substances found in water. It then describes the sampling, cleanup, extraction, and derivatization procedures, and concludes with detection meth- ods. Illustrated with procedure flow charts and schematics, the text includes numerous tables categorizing methods according to type of component, origin of the water sample, parameters and procedures used, and application range. With contributions from international experts, the book guides you through the entire scientific investigation starting with a sampling strategy designed to capture the real-world situation as closely as possible, and ending with an adequate chemometrical and statistical treatment of the acquired data. By organizing data into more than 300 tables, graphs, and charts, and supplementing the text with equations and illustrations, the editors distill a wealth of knowledge into a single accessible reference. E D I T E D B Y L e o M . L . N o l l e t L e e n S . P. D e G e l d e r T H I R D E D I T I O N K14097 © 2008 Taylor & Francis Group, LLC Introduction to Mathematical Modeling and Chaotic Dynamics © 2008 Taylor & Francis Group, LLC Introduction to Mathematical Modeling and Chaotic Dynamics Ranjit Kumar Upadhyay Indian School of Mines Dhanbad, India Satteluri R. K. Iyengar Gokaraju Rangaraju Institute of Engineering & Technology Hyderabad, India © 2008 Taylor & Francis Group, LLC MATLAB® and Simulink® are trademarks of the MathWorks, Inc. and are used with permission. The Math- Works does not warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® and Simulink® software or related products does not constitute endorsement or sponsorship by the MathWorks of a particular pedagogical approach or particular use of the MATLAB® and Simulink® software. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2014 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20130628 International Standard Book Number-13: 978-1-4398-9887-1 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit- ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Contents Preface ......................................................................................................................ix Authors ....................................................................................................................xi 1. Introduction to Mathematical Modeling ...................................................1 Introduction ......................................................................................................1 What Is Mathematical Modeling? .................................................................1 Characteristics of Mathematical Models .................................................4 Classification of Mathematical Models .........................................................5 Classification as per the Nature of Basic Equations ...............................6 Some Simple Examples of Optimization Problems ...............................8 Limitations Associated with Mathematical Modeling .............................10 Modeling Approaches ...................................................................................11 Empirical Approach ..................................................................................11 Theoretical Approach ...............................................................................12 Stochastic or Probabilistic Approach .....................................................14 Deterministic Approach ..........................................................................14 Statistical Approach ..................................................................................14 Simulation Approach ................................................................................15 Discrete and Continuous Approaches ...................................................15 Modeling/Cyclic Processes ..........................................................................16 A Modeling Diagram ....................................................................................16 Compartment Models ...................................................................................17 Mathematical Preliminaries .........................................................................20 Construction of the Lyapunov Function and Testing of Stability .....27 Krasovskii’s Method ............................................................................27 Lyapunov Function for Linear Systems with Constant Coefficients ............................................................................................29 The Routh–Hurwitz Criterion for Stability ...........................................32 Stability Discussion Based on the Linearization Procedure...............33 Global Asymptotic Stability ....................................................................40 Limit Cycles ...............................................................................................42 Liénard’s Equation and Existence of a Limit Cycle .........................48 Energy Balance Method for Limit Cycles .........................................49 Focus ...........................................................................................................51 Dynamic System and Its Mathematical Model .........................................56 Hamiltonian Systems ...............................................................................61 Numerical Tools and Software Used ..........................................................63 MATLAB® ...................................................................................................63 Dynamics: Numerical Explorations .......................................................66 © 2008 Taylor & Francis Group, LLC v vi Contents Exercise 1.1 ......................................................................................................68 References .......................................................................................................73 2. Modeling of Systems from Natural Science ...........................................75 Introduction ....................................................................................................75 Models with Single Population ....................................................................77 Continuous Time Models .........................................................................77 Malthusian Model ................................................................................77 Verhulst–Pearl Logistic Model ...........................................................78 Gompertz Growth Model....................................................................81 Theta-Logistic Model ...........................................................................83 Model with Allee Effect .......................................................................83 Limited Growth Model .......................................................................87 Harvest Model ......................................................................................88 Models with Delay ...............................................................................96 Discrete Time Models ...............................................................................99 Linear Map ............................................................................................99 Model 1 ................................................................................................100 Model 2 ................................................................................................102 Model 3 ................................................................................................103 Model 4 ................................................................................................105 Model 5 ................................................................................................107 Model 6 ................................................................................................107 Model 7 ................................................................................................113 Exercise 2.1 ....................................................................................................114 Two-Dimensional (2D) Continuous Models (Modeling of Population Dynamics of Two Interacting Species) .............................117 Analytical Tool ........................................................................................123 Kolmogorov Theorem ........................................................................123 Local Stability Analysis .....................................................................125 Lotka–Volterra Model .............................................................................126 Variation of the Classical LV Model ................................................135 Leslie–Gower Model ...............................................................................136 Rosenzweig–MacArthur Model ............................................................140 Variations of the RM Model ..............................................................142 Prey–Generalist Predator Model ..........................................................153 Holling–Tanner Model ...........................................................................156 Modified HT Model ................................................................................163 Competition Model .................................................................................166 Model 1: Gause Model .......................................................................167 Model 2 ................................................................................................168 2D Discrete Models......................................................................................170 Nicholson–Bailey Model ........................................................................171 Modified NB Model ................................................................................173 Aihara Model ...........................................................................................177 © 2008 Taylor & Francis Group, LLC Contents vii Exercise 2.2 ....................................................................................................178 References .....................................................................................................180 3. Introduction to Chaotic Dynamics .........................................................189 Introduction ..................................................................................................189 Chaos and Chaotic Dynamics ....................................................................189 Basin of Attraction ..................................................................................193 Primary Routes to Study Chaos ................................................................193 Types of Chaos, Transients, and Attractors..............................................196 Methods of Investigation for Detecting Chaos ........................................201 Method for Selection of Parameter Values ..........................................201 Calculation of the Basin Boundary Structures ...................................206 2D Parameter Scans ................................................................................209 Bifurcation Diagrams .............................................................................211 Hopf Bifurcation Analysis ................................................................213 Time-Series Analysis and Phase-Space Diagram ...............................217 Types of Bifurcations ..............................................................................219 Saddle-Node Bifurcation or Tangent Bifurcation ..........................219 Transcritical Bifurcation ....................................................................221 Pitchfork Bifurcation ..........................................................................222 Period-Doubling Bifurcation ............................................................223 Andronov–Hopf Bifurcation (Cycle Birth Bifurcation) .................224 Poincaré Map and Poincaré Section ..........................................................225 Lyapunov Exponents ...................................................................................226 Exercise 3.1 ....................................................................................................230 References .....................................................................................................234 4. Chaotic Dynamics in Model Systems from Natural Science ............241 Introduction ..................................................................................................241 Chaos in Single Species Model Systems ...................................................242 Model 1 .....................................................................................................242 Model 2 .....................................................................................................243 Model with Predator Saturation ......................................................244 Model with Mating Limitation .........................................................244 Chaos in Two Species Model Systems ......................................................246 Chaos in Two Species Model Systems with Diffusion ...........................247 Rosenzweig–MacArthur Model with Diffusion.................................249 A Variant of Rosenzweig–MacArthur Model with Diffusion ..........250 A Variant of DeAngelis Model with Diffusion and Spatial Heterogeneity ..........................................................................................258 Spatiotemporal Dynamics of a Predator–Prey Model Using Holling Type IV Functional Response .................................................266 Holling–Tanner Model with Diffusion ................................................271 A Variant of Holling–Tanner Model with Diffusion..........................273 Chaos in Multi-Species Model Systems ....................................................279 © 2008 Taylor & Francis Group, LLC viii Contents Hastings and Powell Model ..................................................................280 Simple Prey–Specialist Predator–Generalist Predator Interaction ..285 Single Predator, Two Competing Prey Model .....................................290 Exercise 4.1 ....................................................................................................295 References .....................................................................................................298 5. Modeling of Some Engineering Systems ..............................................305 Introduction ..................................................................................................305 Models in Mechanical Systems ..................................................................305 Nonlinear Oscillators .............................................................................312 Chaos in Mass–Spring System ..............................................................317 Chaotic Oscillations in Duffing–Holmes Oscillator ..........................318 Chaos in Jerk Systems .............................................................................320 Models in Electronic Circuits .....................................................................321 Nonlinear Circuits .......................................................................................324 Chua’s Diode and Chua’s Circuit ..........................................................324 Murali–Lakshmanan–Chua Circuit .....................................................327 A Third-Order Autonomous Chaotic Oscillator ................................330 Sprott’s Chaotic Electrical Circuit .........................................................332 References .....................................................................................................333 Solutions to Odd-Numbered Problems .........................................................339 © 2008 Taylor & Francis Group, LLC

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.