ebook img

Introduction to differential calculus : systematic studies with engineering applications for beginners PDF

779 Pages·2012·4.75 MB·English
by  Rohde
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to differential calculus : systematic studies with engineering applications for beginners

INTRODUCTION TO DIFFERENTIAL CALCULUS INTRODUCTION TO DIFFERENTIAL CALCULUS Systematic Studies with Engineering Applications for Beginners Ulrich L. Rohde Prof. Dr.-Ing.Dr. h.c. mult. BTUCottbus, Germany Synergy MicrowaveCorporation Paterson, NJ, USA G. C. Jain (Retd. Scientist)Defense Research andDevelopmentOrganization Maharashtra,India Ajay K. Poddar Chief Scientist,Synergy MicrowaveCorporation, Paterson, NJ, USA A. K. Ghosh Professor, Department ofAerospace Engineering Indian Institute ofTechnology – Kanpur Kanpur, India Copyright(cid:1)2012byJohnWiley&Sons.Allrightsreserved PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey PublishedsimultaneouslyinCanada Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformor byanymeans,electronic,mechanical,photocopying,recording,scanning,orotherwise,exceptas permittedunderSection107or108ofthe1976UnitedStatesCopyrightAct,withouteithertheprior writtenpermissionofthePublisher,orauthorizationthroughpaymentoftheappropriateper-copyfeeto theCopyrightClearanceCenter,Inc.,222RosewoodDrive,Danvers,MA01923,(978)750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission shouldbeaddressedtothePermissionsDepartment,JohnWiley&Sons,Inc.,111RiverStreet,Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission. LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbestefforts inpreparingthisbook,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyor completenessofthecontentsofthisbookandspecificallydisclaimanyimpliedwarrantiesof merchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedbysales representativesorwrittensalesmaterials.Theadviceandstrategiescontainedhereinmaynotbesuitable foryoursituation.Youshouldconsultwithaprofessionalwhereappropriate.Neitherthepublisher norauthorshallbeliableforanylossofprofitoranyothercommercialdamages,includingbutnot limitedtospecial,incidental,consequential,orotherdamages. Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,pleasecontact ourCustomerCareDepartmentwithintheUnitedStatesat(800)762-2974,outsidetheUnitedStates at(317)572-3993orfax(317)572-4002. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprint maynotbeavailableinelectronicformats.FormoreinformationaboutWileyproducts,visitourwebsite at www.wiley.com. LibraryofCongressCataloging-in-PublicationData: Introductiontodifferentialcalculus:systematicstudieswithengineering applicationsforbeginners/UlrichL.Rohde...[etal.].– 1sted. p.cm. Includesbibliographicalreferencesandindex. ISBN978-1-118-11775-0(hardback) 1. Differentialcalculus–Textbooks.I. Rohde,UlrichL. QA304.I592012 513’.33–dc23 2011018421 PrintedintheUnitedStatesofAmerica 10 9 8 7 6 5 4 3 2 1 CONTENTS Foreword xiii Preface xvii Biographies xxv Introduction xxvii Acknowledgments xxix 1 FromArithmetictoAlgebra (WhatmustyouknowtolearnCalculus?) 1 1.1 Introduction 1 1.2 TheSetofWholeNumbers 1 1.3 TheSetofIntegers 1 1.4 TheSetofRationalNumbers 1 1.5 TheSetofIrrationalNumbers 2 1.6 TheSetofRealNumbers 2 1.7 EvenandOddNumbers 3 1.8 Factors 3 1.9 PrimeandCompositeNumbers 3 1.10 CoprimeNumbers 4 1.11 HighestCommonFactor(H.C.F.) 4 1.12 LeastCommonMultiple(L.C.M.) 4 1.13 TheLanguageofAlgebra 5 1.14 AlgebraasaLanguageforThinking 7 1.15 Induction 9 1.16 AnImportantResult:TheNumberofPrimesisInfinite 10 1.17 AlgebraastheShorthandofMathematics 10 1.18 NotationsinAlgebra 11 1.19 ExpressionsandIdentitiesinAlgebra 12 1.20 OperationsInvolvingNegativeNumbers 15 1.21 DivisionbyZero 16 2 TheConceptofaFunction (WhatmustyouknowtolearnCalculus?) 19 2.1 Introduction 19 2.2 EqualityofOrderedPairs 20 2.3 RelationsandFunctions 20 2.4 Definition 21 v vi CONTENTS 2.5 Domain,Codomain,Image,andRangeofaFunction 23 2.6 DistinctionBetween“f”and“f(x)” 23 2.7 DependentandIndependentVariables 24 2.8 FunctionsataGlance 24 2.9 ModesofExpressingaFunction 24 2.10 TypesofFunctions 25 2.11 InverseFunctionf(cid:1)1 29 2.12 ComparingSetswithoutCountingtheirElements 32 2.13 TheCardinalNumberofaSet 32 2.14 EquivalentSets(Definition) 33 2.15 FiniteSet(Definition) 33 2.16 InfiniteSet(Definition) 34 2.17 CountableandUncountableSets 36 2.18 CardinalityofCountableandUncountableSets 36 2.19 SecondDefinitionofanInfinitySet 37 2.20 TheNotionofInfinity 37 2.21 AnImportantNoteAbouttheSizeofInfinity 38 2.22 AlgebraofInfinity(1) 38 3 DiscoveryofRealNumbers:ThroughTraditionalAlgebra (WhatmustyouknowtolearnCalculus?) 41 3.1 Introduction 41 3.2 PrimeandCompositeNumbers 42 3.3 TheSetofRationalNumbers 43 3.4 TheSetofIrrationalNumbers 43 3.5 TheSetofRealNumbers 43 3.6 DefinitionofaRealNumber 44 3.7 GeometricalPictureofRealNumbers 44 3.8 AlgebraicPropertiesofRealNumbers 44 3.9 Inequalities(OrderPropertiesinRealNumbers) 45 3.10 Intervals 46 3.11 PropertiesofAbsoluteValues 51 3.12 NeighborhoodofaPoint 54 3.13 PropertyofDenseness 55 3.14 CompletenessPropertyofRealNumbers 55 3.15 (Modified)DefinitionII(l.u.b.) 60 3.16 (Modified)DefinitionII(g.l.b.) 60 4 FromGeometrytoCoordinateGeometry (WhatmustyouknowtolearnCalculus?) 63 4.1 Introduction 63 4.2 CoordinateGeometry(orAnalyticGeometry) 64 4.3 TheDistanceFormula 69 4.4 SectionFormula 70 4.5 TheAngleofInclinationofaLine 71 4.6 Solution(s)ofanEquationanditsGraph 76 4.7 EquationsofaLine 83 4.8 ParallelLines 89 CONTENTS vii 4.9 RelationBetweentheSlopesof(Nonvertical)Linesthatare PerpendiculartoOneAnother 90 4.10 AngleBetweenTwoLines 92 4.11 PolarCoordinateSystem 93 5 TrigonometryandTrigonometricFunctions (WhatmustyouknowtolearnCalculus?) 97 5.1 Introduction 97 5.2 (Directed)Angles 98 5.3 Rangesofsin(cid:1)andcos(cid:1) 109 5.4 UsefulConceptsandDefinitions 111 5.5 TwoImportantPropertiesofTrigonometricFunctions 114 5.6 GraphsofTrigonometricFunctions 115 5.7 TrigonometricIdentitiesandTrigonometricEquations 115 5.8 RevisionofCertainIdeasinTrigonometry 120 6 MoreAboutFunctions (WhatmustyouknowtolearnCalculus?) 129 6.1 Introduction 129 6.2 FunctionasaMachine 129 6.3 DomainandRange 130 6.4 DependentandIndependentVariables 130 6.5 TwoSpecialFunctions 132 6.6 CombiningFunctions 132 6.7 RaisingaFunctiontoaPower 137 6.8 CompositionofFunctions 137 6.9 EqualityofFunctions 142 6.10 ImportantObservations 142 6.11 EvenandOddFunctions 143 6.12 IncreasingandDecreasingFunctions 144 6.13 ElementaryandNonelementaryFunctions 147 7a TheConceptofLimitofaFunction (WhatmustyouknowtolearnCalculus?) 149 7a.1 Introduction 149 7a.2 UsefulNotations 149 7a.3 TheConceptofLimitofaFunction:InformalDiscussion 151 7a.4 IntuitiveMeaningofLimitofaFunction 153 7a.5 TestingtheDefinition[Applicationsofthe«, dDefinitionofLimit] 163 7a.6 Theorem(B):SubstitutionTheorem 174 7a.7 Theorem(C):SqueezeTheoremorSandwichTheorem 175 7a.8 One-SidedLimits(ExtensiontotheConceptofLimit) 175 7b MethodsforComputingLimitsofAlgebraicFunctions (WhatmustyouknowtolearnCalculus?) 177 7b.1 Introduction 177 7b.2 MethodsforEvaluatingLimitsofVariousAlgebraicFunctions 178 viii CONTENTS 7b.3 LimitatInfinity 187 7b.4 InfiniteLimits 190 7b.5 Asymptotes 192 8 TheConceptofContinuityofaFunction,andPointsofDiscontinuity (WhatmustyouknowtolearnCalculus?) 197 8.1 Introduction 197 8.2 DevelopingtheDefinitionofContinuity“AtaPoint” 204 8.3 ClassificationofthePointsofDiscontinuity:TypesofDiscontinuities 214 8.4 CheckingContinuityofFunctionsInvolvingTrigonometric, Exponential,andLogarithmicFunctions 215 8.5 FromOne-SidedLimittoOne-SidedContinuityanditsApplications 224 8.6 ContinuityonanInterval 224 8.7 PropertiesofContinuousFunctions 225 9 TheIdeaofaDerivativeofaFunction 235 9.1 Introduction 235 9.2 DefinitionoftheDerivativeasaRateFunction 239 9.3 InstantaneousRateofChangeofy[¼f(x)]atx¼x andthe 1 SlopeofitsGraphatx¼x 239 1 9.4 ANotationforIncrement(s) 246 9.5 TheProblemofInstantaneousVelocity 246 9.6 DerivativeofSimpleAlgebraicFunctions 259 9.7 DerivativesofTrigonometricFunctions 263 9.8 DerivativesofExponentialandLogarithmicFunctions 264 9.9 DifferentiabilityandContinuity 264 9.10 PhysicalMeaningofDerivative 270 9.11 SomeInterestingObservations 271 9.12 HistoricalNotes 273 10 AlgebraofDerivatives:RulesforComputingDerivativesof VariousCombinationsofDifferentiableFunctions 275 10.1 Introduction 275 10.2 RecallingtheOperatorofDifferentiation 277 10.3 TheDerivativeofaCompositeFunction 290 10.4 UsefulnessofTrigonometricIdentitiesinComputingDerivatives 300 10.5 DerivativesofInverseFunctions 302 11a BasicTrigonometricLimitsandTheirApplications inComputingDerivativesofTrigonometricFunctions 307 11a.1 Introduction 307 11a.2 BasicTrigonometricLimits 308 11a.3 DerivativesofTrigonometricFunctions 314 11b MethodsofComputingLimitsofTrigonometricFunctions 325 11b.1 Introduction 325 11b.2 LimitsoftheType(I) 328

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.