ebook img

Integrating Artificial Intelligence and IoT for Advanced Health Informatics: AI in the Healthcare Sector PDF

188 Pages·2022·4.637 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Integrating Artificial Intelligence and IoT for Advanced Health Informatics: AI in the Healthcare Sector

Internet of Things Carmela Comito Agostino Forestiero Ester Zumpano   Editors Integrating Artificial Intelligence and IoT for Advanced Health Informatics AI in the Healthcare Sector Internet of Things SeriesEditors GiancarloFortino,Rende(CS),Italy AntonioLiotta,EdinburghNapierUniversity,SchoolofComputing,Edinburgh,UK The series Internet of Things - Technologies, Communications and Computing publishesnewdevelopmentsandadvancesinthevariousareasofthedifferentfacets oftheInternetofThings.Theintentistocovertechnology(smartdevices,wireless sensors, systems), communications (networks and protocols) and computing (the- ory, middleware and applications) of the Internet of Things, as embedded in the fieldsofengineering,computerscience,lifesciences,aswellasthemethodologies behind them. The series contains monographs, lecture notes and edited volumes in the Internet of Things research and development area, spanning the areas of wireless sensor networks, autonomic networking, network protocol, agent-based computing,artificialintelligence,selforganizingsystems,multi-sensordatafusion, smartobjects,andhybridintelligentsystems. **Indexing:InternetofThingsiscoveredbyScopusandEi-Compendex** Moreinformationaboutthisseriesathttps://link.springer.com/bookseries/11636 Carmela Comito • Agostino Forestiero Ester Zumpano Editors Integrating Artificial Intelligence and IoT for Advanced Health Informatics AI in the Healthcare Sector Editors CarmelaComito AgostinoForestiero ICAR-CNR ICAR-CNR UniversityofCalabria UniversityofCalabria Rende,Italy Rende,Italy EsterZumpano DIMES UniversityofCalabria Rende,Italy ISSN2199-1073 ISSN2199-1081 (electronic) InternetofThings ISBN978-3-030-91180-5 ISBN978-3-030-91181-2 (eBook) https://doi.org/10.1007/978-3-030-91181-2 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerland AG2022 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface The integration of Internet of Things (IoT) and artificial intelligence (AI), two emergingtopicsincomputercommunicationandnetworkingresearch,isbecoming commonpracticeinmanyinterdisciplinaryareasofapplication,amongwhichsmart healthcare plays an important role. Efficient collecting, monitoring, controlling, optimization, modeling, and predicting are the key steps that provide for the integration of AI algorithms and IoT systems. In the smart healthcare field, in whichubiquitouscomputingandtraditionalcomputationalmethodsaloneareoften inadequate, many advantages and improvements arise when exploiting AI within IoTarchitectures.AIandIoTtechniques,indeed,canplayacrucialroletodealwith suchamountsofheterogeneous,multi-scale,andmulti-modaldatacomingfromIoT infrastructures[1].Thedifferentandnumerousissuesinthehealthcareenvironment requires innovative and advanced methodological, theoretical, and mathematical modelling and the implementation of protocols and computational methods to be effectivelyaddressed[2].ThisbookexploreshowthefusionofIoTandAIallows thedesignofmodels,methodologies,algorithms,evaluationbenchmarks,andtools thatcanaddresschallengingproblemsrelatedtohealthinformatics,healthcare,and well-being. Chapter “Lower-Gait Tracking Application Using Smartphones and Tablets” extends a previous application, the Lower-Body Motion Tracking version 1.0.1 (LGait), introducing a mobility analysis using smartphones and tablets. The pro- posed system is designed to support the medical qualifying of mobility in various settings,andcanbegeneralizedtootherapplications. Chapter “One-Class Classification Approach in Accelerometer-Based Remote Monitoring of Physical Activities for Healthcare Applications” proposes an OCC- basedHARarchitecturewithIoTintegration.InproposedOCCscheme,theauthors utilize artificial data generation (ADG) to generate training data for the negative classbasedonthetargetclass.ResultsofanexperimentalstudyforourOCCmodel onadatasetconsistingofambulatoryandstaticactivitiesarepresented. Chapter “Detecting and Monitoring Behavioural Patterns in Individuals with Cognitive Disorders in the Home Environment with Partial Annotations” seeks to characterize behavioral signatures of mild cognitive impairment (MCI) and v vi Preface Alzheimer’s disease (AD) dementia. The authors introduce bespoke machine learningtechniquesaccountingforpartialannotationstoproducebehavioralmetrics ofkeysymptomsandusetheseonanoveldatasetoflongitudinalsensordatafrom personswithMCIandAD. Chapter “Toward On-Device Weight Monitoring from Selfie Face Images Using Smartphones” presents an evaluation of several lightweight CNNs such asMobileNet-V2,ShuffleNet-V2,andlightCNN-29forBMIpredictionandobesity classification from facial images captured using smartphones. The comparative analysisisdonewithheavyweightVGG-16andResNet-50basedCNNmodels. Chapter “Convergence Between IoT and AI for Smart Health and Predictive Medicine” exhibits a literature review conducted to determine the most important technologies, methodologies, algorithms, and models for smart health systems. In addition,themainbenefitsandchallengesofsmarthealthwereexplored. Chapter “An Artificial Intelligence and Internet of Things Platform for Health- careandIndustrialApplications”presentsanartificialintelligence(AI)andInternet of Things (IOT) based platform. For applications where an AI is needed, e.g., face/object/scene detection/classification/recognition, an AI engine is presented, while for applications where large-scale searching is needed, a search engine is presented. Chapter“MethodsinDigitalMentalHealth:Smartphone-BasedAssessmentand InterventionforStress,Anxiety,andDepression”presentsanearlyattempttocodify the highly interdisciplinary relationship between technology and mental health. Indeed,technologies,especiallyartificialintelligenceandInternetofThings,enable assessmentandinterventiontobetailoredveryspecificallytotheindividual. Chapter “AI for the Detection of the Diabetic Retinopathy” describes the state of the art of AI-based DR screening technologies, some of which are already commerciallyavailable. Chapter“EnhancingEEG-BasedEmotionRecognitionwithFastOnlineInstance Transfer”proposesfastonlineinstancetransfer(FOIT)forenhancingtheaffective brain computer interface (aBCI). FOIT heuristically selects auxiliary data from historical sessions and (or) other subjects, which are subsequently combined with thetrainingdataforsupervisedtraining. Chapter“UsingAssociationRulestomineActionableKnowledgefromInternet ofMedicalThinksData”investigatesinnovativemethodstoanalyzeefficientlydata produced by the Internet of Medical Things (IoMT). Association rules (AR) are a simpleandeffectiveunsupervisedlearningmethodologyusedtoextractactionable knowledge from these dynamic data, which can be used at the edge of IoMT, or evendirectlyembeddedintotheIoMtdevices. References 1. Piccialli,F.,DiSomma,V.,Giampaolo,F.,Cuomo,S.,Fortino,G.:Asurveyon deeplearninginmedicine:Why,howandwhen?Inf.Fusion66,111–137(2021) Preface vii 2. Khan, S.R., Sikandar, M., Almogren, A., Din, I.U., Guerrieri, A., Fortino, G.: IoMT-based computational approach for detecting brain tumor. Future Gener. Comput.Syst.109,360–367(2020) Rende,Italy CarmelaComito Rende,Italy AgostinoForestiero Rende,Italy EsterZumpano Contents Lower-GaitTrackingApplicationUsingSmartphonesandTablets........ 1 TruongX.Tran,Chang-kwonKang,andShannonL.Mathis One-Class Classification Approach in Accelerometer-Based RemoteMonitoringofPhysicalActivitiesforHealthcareApplications.... 9 GamzeUslu,BerkUnal,AylinAydın,andSebnemBaydere DetectingandMonitoringBehaviouralPatternsinIndividuals withCognitiveDisordersintheHomeEnvironmentwithPartial Annotations....................................................................... 25 WeisongYang,RafaelPoyiadzi,YoavBen-Shlomo,IanCraddock,Liz Coulthard,RaulSantos-Rodriguez,JamesSelwood,andNiallTwomey TowardOn-DeviceWeightMonitoringfromSelfieFaceImages UsingSmartphones .............................................................. 53 HeraSiddiqui,AjitaRattani,LailaCure,NikkiKeeneWoods,Rhonda Lewis,JanetTwomey,BettySmith-Campbell,andTwylaHill Convergence Between IoT and AI for Smart Health and PredictiveMedicine.............................................................. 69 CarmelaComito,DeborahFalcone,andAgostinoForestiero AnArtificialIntelligenceandInternetofThingsPlatformfor HealthcareandIndustrialApplications ....................................... 85 WeijunTan,YueZhuo,XingChen,QiYao,andJingfengLiu Methods in Digital Mental Health: Smartphone-Based AssessmentandInterventionforStress,Anxiety,andDepression ......... 105 TineKolenik AIfortheDetectionoftheDiabeticRetinopathy............................. 129 EugenioVocaturoandEsterZumpano ix x Contents EnhancingEEG-BasedEmotionRecognitionwithFastOnline InstanceTransfer................................................................. 141 HaoChen,HuiguangHe,TingCai,andJinpengLi UsingAssociationRulestoMineActionableKnowledgefrom InternetofMedicalThinksData ............................................... 161 GiuseppeAgapito Index............................................................................... 171

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.