IJCNLP 2017 The Eighth International Joint Conference on Natural Language Processing Proceedings of the IJCNLP 2017, Shared Tasks November 27 – December 1, 2017 Taipei, Taiwan (cid:13)c 2017AsianFederationofNaturalLanguageProcessing 978-1-948087-03-2(ProceedingsoftheIJCNLP2017,SharedTasks) ii Introduction The 8th International Joint Conference on Natural Language Processing (IJCNLP 2017) took place in Taipei,TaiwanfromNovember27toDecember1,2017. ItwasorganizedbytheNationalTaiwanNormal University and by the Association for Computational Linguistics and Chinese Language Processing (ACLCLP),anditwashostedbytheAsianFederationofNaturalLanguageProcessing(AFNLP). ForafirsttimeinthehistoryofIJCNLP,theconferencefeaturedsharedtasks. Wereceivedatotaloften taskproposals,andafterarigurousreview,weacceptedthefollowingfiveofthem: • Task 1: Chinese Grammatical Error Diagnosis. Participants were asked to build systems to automatically detect the errors in Chinese sentences made by Chinese-as-Second-Language learners, i.e., redundant word, missing word, word selection and word ordering. (Organized by: GaoqiRao,BaolinZhang,andEndongXun) • Task 2: Dimensional Sentiment Analysis for Chinese Phrases. Given a word or a phrase, participants were asked to generate a real-valued score between 1 and 9, indicating the degree of valence, from most negative to most positive, and for the degree of arousal, from most calm to mostexcited. (OrganizedbyLiang-ChihYu,Lung-HaoLee,JinWang,andKam-FaiWong) • Task3: ReviewOpinionDiversification. Participantswereaskedtobuildsystemstorankproduct reviews based on a summary of opinions in two domains: books and electronics. (Organized by AnilKumarSingh,JulianMcAuley,AvijitThawani,MayankPanchal,AnubhavGupta,andRajesh KumarMundotiya) • Task 4: Customer Feedback Analysis. Participants were asked to train classifiers for the detectionofmeaningincustomerfeedbackinEnglish,French,Spanish,andJapanese: comment, request,bug,complaint,meaningless,andundetermined. (OrganizedbyChao-HongLiu,Yasufumi Moriya,AlbertoPoncelas,andDeclanGroves) • Task 5: Multi-choice Question Answering in Examinations. Participants were asked to build systems to choose the correct option for a multi-choice question: for English and Chinese. (OrganizedbyJunZhao,KangLiu,ShizhuHe,ZhuoyuWei,andShangminGuo) A total of 40 teams participated in the five tasks (and many more registered to participate, but ended upnotsubmittingsystems),submittinghundredsofrunsforthedifferenttasksandtheirsubtasks: 5for task 1, 13 for task 2, 3 for task 3, 12 for task 4, and 7 for task 5. Moreover, most of the participating teamscontributedasystemdescriptionpaper: 3fortask1,10fortask2,3fortask3,9fortask4,and6 fortask5. Finally,theorganizersofeachtaskpreparedataskdescriptionpaper. Alltheseappearinthe presentproceedings. Wethankthesharedtaskparticipants,aswellasthetaskorganizers,foralltheirgreatwork. Wefurther taketheopportunitytothanktheprogramcommitteeandallreviewersfortheirthoroughreviews. TheIJCNLP’2017SharedTaskCo-Chairs: Chao-HongLiu,ADAPTCentre,DublinCityUniversity,Ireland PreslavNakov,QatarComputingResearchInstitute,HBKU,Qatar NianwenXue,BrandeisUniversity,USA iii Organizing Committee SharedTaskWorkshopCo-Chairs Chao-HongLiu,ADAPTCentre,DublinCityUniversity PreslavNakov,QatarComputingResearchInstitute,HBKU NianwenXue,BrandeisUniversity Task1: ChineseGrammaticalErrorDiagnosis(CGED)Organizers GaoqiRao,BeijingLanguageandCultureUniversity BaolinZhang,BeijingLanguageandCultureUniversity EndongXun,BeijingLanguageandCultureUniversity Task2: DimensionalSentimentAnalysisforChinesePhrases(DSAP)Organizers Liang-ChihYu,YuanZeUniversity Lung-HaoLee,NationalTaiwanNormalUniversity JinWang,YunnanUniversity Kam-FaiWong,TheChineseUniversityofHongKong Task3: ReviewOpinionDiversificationOrganizers AnilKumarSingh,IndianInstituteofTechnology(BHU)Varanasi JulianMcAuley,UniversityofCalifornia,SanDiego AvijitThawani,IndianInstituteofTechnology(BHU)Varanasi MayankPanchal,IndianInstituteofTechnology(BHU)Varanasi AnubhavGupta,IndianInstituteofTechnology(BHU)Varanasi RajeshKumarMundotiya,IndianInstituteofTechnology(BHU) Task4: CustomerFeedbackAnalysisOrganizers Chao-HongLiu,ADAPTCentre,DublinCityUniversity YasufumiMoriya,ADAPTCentre,DublinCityUniversity AlbertoPoncelas,ADAPTCentre,DublinCityUniversity DeclanGroves,MicrosoftDublin Task5: Multi-choiceQuestionAnsweringinExaminationsOrganizers JunZhao,InstituteofAutomation,ChineseAcademyofSciences KangLiu,InstituteofAutomation,ChineseAcademyofSciences ShizhuHe,InstituteofAutomation,ChineseAcademyofSciences ZhuoyuWei,InstituteofAutomation,ChineseAcademyofSciences ShangminGuo,InstituteofAutomation,ChineseAcademyofSciences v Program Committee Reviewers AlbertoPoncelas,ADAPTCentre,DublinCityUniversity AnilKumarSingh,IndianInstituteofTechnology(BHU)Varanasi AnubhavGupta,IndianInstituteofTechnology(BHU)Varanasi AvijitThawani,IndianInstituteofTechnology(BHU)Varanasi BaolinZhang,BeijingLanguageandCultureUniversity Chao-HongLiu,ADAPTCentre,DublinCityUniversity EndongXun,BeijingLanguageandCultureUniversity GaoqiRao,BeijingLanguageandCultureUniversity HaithemAfli,ADAPTCentre,DublinCityUniversity JinWang,YunnanUniversity JulianMcAuley,UniversityofCalifornia,SanDiego JunZhao,InstituteofAutomation,ChineseAcademyofSciences Kam-FaiWong,TheChineseUniversityofHongKong KangLiu,InstituteofAutomation,ChineseAcademyofSciences Liang-ChihYu,YuanZeUniversity Lung-HaoLee,NationalTaiwanNormalUniversity MayankPanchal,IndianInstituteofTechnology(BHU)Varanasi MonalisaDey,JadavpurUniversity NianwenXue,BrandeisUniversity PreslavNakov,QatarComputingResearchInstitute,HBKU PruthwikMishra,InternationalInstituteofInformationTechnology,Hyderabad RajeshKumarMundotiya,IndianInstituteofTechnology(BHU)Varanasi ShangminGuo,InstituteofAutomation,ChineseAcademyofSciences Shih-HungWu,ChaoyangUniversityofTechnology YasufumiMoriya,ADAPTCentre,DublinCityUniversity vi Invited Talk Public Health Surveillance Using Twitter: The Case for Biosurveillance and Pharmacovigilance AntonioJimenoYepes IBMResearch,Australia Abstract Publichealthsurveillanceusingclinicaldataischallengingduetoissuesrelatedtoaccessinghealth care data in a homogeneous way and in real-time, which is further affected by privacy concerns. Yet, it is still relevant to access this data in real-time to model potential disease outbreaks and to detect post-marketing adverse events of drugs. Social networks such as Twitter provide a large quantityofinformationthatcanberelevantasanalternativetoclinicaldata. Wehaveresearched theusageofTwitterinseveraltasksrelatedtopublichealthsurveillance. Inthistalk,Iwillpresent the work that we have done in IBM Research Australia using Twitter in public health related problems and the challenges that we have faced using Twitter. Specifically, I will show results related to the prediction of the prevalence of flu in the USA and related to the identification of post-marketingadverseeventsofdrugs. Biography Dr Antonio Jimeno Yepes is a senior researcher in text analytics in the Biomedical Data Science team at IBM Research Australia. Before joining IBM, he worked as software engineer at CERN from2000to2006,thenassoftwareengineerattheEuropeanBioinformaticsInstitute(EBI)from 2006to2010,asapost-doctoralresearcherattheUSANationalLibraryofMedicine(NIH/NLM) from2010to2012,asaresearcheratNationalICTAustraliafrom2012to2014andasresearcher attheCISdepartmentattheUniversityofMelbournein2014. HeobtainedhisMastersdegreein Computer Science in 2001, a master in Intelligent systems in 2008 and his PhD degree related to biomedicalnaturallanguagesandontologiesin2009fromUniversityJaumeI. vii Table of Contents IJCNLP-2017Task1: ChineseGrammaticalErrorDiagnosis GaoqiRAO,BaolinZhang,EndongXUNandLung-HaoLee ................................ 1 IJCNLP-2017Task2: DimensionalSentimentAnalysisforChinesePhrases Liang-ChihYu,Lung-HaoLee,JinWangandKam-FaiWong................................9 IJCNLP-2017Task3: ReviewOpinionDiversification(RevOpiD-2017) AnilKumarSingh,AvijitThawani,MayankPanchal,AnubhavGuptaandJulianMcAuley.....17 IJCNLP-2017Task4: CustomerFeedbackAnalysis Chao-HongLiu,YasufumiMoriya,AlbertoPoncelasandDeclanGroves.....................26 IJCNLP-2017Task5: Multi-choiceQuestionAnsweringinExaminations ShangminGuo,KangLiu,ShizhuHe,CaoLiu,JunZhaoandZhuoyuWei...................34 AlibabaatIJCNLP-2017Task1: EmbeddingGrammaticalFeaturesintoLSTMsforChineseGrammat- icalErrorDiagnosisTask Yiyang,PengjunXie,Juntao,Guangweixu,LinlinliandSiluo............................41 THU_NGN at IJCNLP-2017 Task 2: Dimensional Sentiment Analysis for Chinese Phrases with Deep LSTM ChuhanWu,FangzhaoWu,YongfengHuang,SixingWuandZhigangYuan..................47 IIIT-HatIJCNLP-2017Task3: ABidirectional-LSTMApproachforReviewOpinionDiversification PruthwikMishra,PrathyushaDanda,SilpaKannegantiandSoujanyaLanka..................53 Bingo at IJCNLP-2017 Task 4: Augmenting Data using Machine Translation for Cross-linguistic Cus- tomerFeedbackClassification HebaElfardy,ManishaSrivastava,WeiXiao,JaredKramerandTarunAgarwal...............59 ADAPT Centre Cone Team at IJCNLP-2017 Task 5: A Similarity-Based Logistic Regression Approach toMulti-choiceQuestionAnsweringinanExaminationsSharedTask DariaDzendzik,AlbertoPoncelas,CarlVogelandQunLiu.................................67 YNU-HPCC at IJCNLP-2017 Task 1: Chinese Grammatical Error Diagnosis Using a Bi-directional LSTM-CRFModel QuanleiLiao,JinWang,JinnanYangandXuejieZhang....................................73 CVTE at IJCNLP-2017 Task 1: Character Checking System for Chinese Grammatical Error Diagnosis Task XianLi,PengWang,SuixueWang,GuanyuJiangandTianyuanYou ........................ 78 LDCCNLP at IJCNLP-2017 Task 2: Dimensional Sentiment Analysis for Chinese Phrases Using Ma- chineLearning PengZhongandJingbinWang...........................................................84 CKIPatIJCNLP-2017Task2: NeuralValence-ArousalPredictionforPhrases Peng-HsuanLi,Wei-YunMaandHsin-YangWang.........................................89 CIAL at IJCNLP-2017 Task 2: An Ensemble Valence-Arousal Analysis System for Chinese Words and Phrases Zheng-WenLin,Yung-ChunChang,Chen-AnnWang,Yu-LunHsiehandWen-LianHsu ...... 95 ix AlibabaatIJCNLP-2017Task2: ABoostedDeepSystemforDimensionalSentimentAnalysisofChinese Phrases XinZhou,JianWang,XuXie,ChanglongSunandLuoSi.................................100 NLPSA at IJCNLP-2017 Task 2: Imagine Scenario: Leveraging Supportive Images for Dimensional SentimentAnalysis szu-minchen,Zi-YuanChenandLun-WeiKu............................................105 NCYUatIJCNLP-2017Task2: DimensionalSentimentAnalysisforChinesePhrasesusingVectorRep- resentations Jui-FengYeh,Jian-ChengTsai,Bo-WeiWuandTai-YouKuang............................112 MainiwayAIatIJCNLP-2017Task2: EnsemblesofDeepArchitecturesforValence-ArousalPrediction YassineBenajiba,JinSun,YongZhang,ZhiliangWengandOrBiran.......................118 NCTU-NTUT at IJCNLP-2017 Task 2: Deep Phrase Embedding using bi-LSTMs for Valence-Arousal RatingsPredictionofChinesePhrases Yen-HsuanLee,Han-YunYeh,Yih-RuWangandYuan-FuLiao............................124 NTOUAatIJCNLP-2017Task2: PredictingSentimentScoresofChineseWordsandPhrases Chuan-JieLinandHao-TsungChang....................................................130 CYUTatIJCNLP-2017Task3: SystemReportforReviewOpinionDiversification Shih-HungWu,Su-YuChangandLiang-PuChen.........................................134 JUNLPatIJCNLP-2017Task3: ARankPredictionModelforReviewOpinionDiversification MonalisaDey,AnupamMondalandDipankarDas........................................138 All-In-1atIJCNLP-2017Task4: ShortTextClassificationwithOneModelforAllLanguages BarbaraPlank.........................................................................143 SentiNLPatIJCNLP-2017Task4: CustomerFeedbackAnalysisUsingaBi-LSTM-CNNModel ShuyingLin,HuoshengXie,Liang-ChihYuandK.RobertLai.............................149 IIIT-HatIJCNLP-2017Task4: CustomerFeedback Analysis usingMachineLearningandNeuralNet- workApproaches PrathyushaDanda,PruthwikMishra,SilpaKannegantiandSoujanyaLanka.................155 ADAPT at IJCNLP-2017 Task 4: A Multinomial Naive Bayes Classification Approach for Customer FeedbackAnalysistask PintuLohar,KoelDuttaChowdhury,HaithemAfli,MohammedHasanuzzamanandAndyWay161 OhioStateatIJCNLP-2017Task4: ExploringNeuralArchitecturesforMultilingualCustomerFeedback Analysis DushyantaDhyani.....................................................................170 YNU-HPCCatIJCNLP-2017Task4: Attention-basedBi-directionalGRUModelforCustomerFeedback AnalysisTaskofEnglish NanWang,JinWangandXuejieZhang..................................................174 NITMZ-JUatIJCNLP-2017Task4: CustomerFeedbackAnalysis SomnathBanerjee,ParthaPakray,RiyankaManna,DipankarDasandAlexanderGelbukh....180 IITPatIJCNLP-2017Task4: AutoAnalysisofCustomerFeedbackusingCNNandGRUNetwork DeepakGupta,PabitraLenka,HarsimranBedi,AsifEkbalandPushpakBhattacharyya.......184 x
Description: