ebook img

How to Prove It: A Structured Approach PDF

398 Pages·2006·2.26 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview How to Prove It: A Structured Approach

Daniel J. Velleman P1:JZZ/JZK 0521861241pre CB996/Velleman October19,2005 23:41 0521861241 CharCount=0 This page intentionally left blank i P1:JZZ/JZK 0521861241pre CB996/Velleman October19,2005 23:41 0521861241 CharCount=0 How To Prove It i P1:JZZ/JZK 0521861241pre CB996/Velleman October19,2005 23:41 0521861241 CharCount=0 ii P1:JZZ/JZK 0521861241pre CB996/Velleman October19,2005 23:41 0521861241 CharCount=0 HOW TO PROVE IT A Structured Approach, Second Edition Daniel J. Velleman DepartmentofMathematicsandComputerScience AmherstCollege iii cambridge university press Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press TheEdinburghBuilding,Cambridgecb22ru,UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Informationo nthi stitle :www.cambri dge.org/9780521861243 © Cambridge University Press 1994, 2006 Thispublicationisincopyright.Subjecttostatutoryexceptionandtotheprovisionof relevantcollectivelicensingagreements,noreproductionofanypartmaytakeplace without the written permission of Cambridge University Press. Firstpublishedinprintformat 2006 isbn-13 978-0-511-16116-2 eBook(EBL) isbn-10 0-511-16116-6 eBook(EBL) isbn-13 978-0-521-86124-3 hardback isbn-10 0-521-86124-1 hardback isbn-13 978-0-521-67599-4 isbn-10 0-521-67599-5 CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyofurls forexternalorthird-partyinternetwebsitesreferredtointhispublication,anddoesnot guaranteethatanycontentonsuchwebsitesis,orwillremain,accurateorappropriate. P1:JZZ/JZK 0521861241pre CB996/Velleman October19,2005 23:41 0521861241 CharCount=0 ToShelley v P1:JZZ/JZK 0521861241pre CB996/Velleman October19,2005 23:41 0521861241 CharCount=0 vi P1:JZZ/JZK 0521861241pre CB996/Velleman October19,2005 23:41 0521861241 CharCount=0 Contents Preface pageix Introduction 1 1 SententialLogic 8 1.1 DeductiveReasoningandLogicalConnectives 8 1.2 TruthTables 14 1.3 VariablesandSets 26 1.4 OperationsonSets 34 1.5 TheConditionalandBiconditionalConnectives 43 2 QuantificationalLogic 55 2.1 Quantifiers 55 2.2 EquivalencesInvolvingQuantifiers 64 2.3 MoreOperationsonSets 73 3 Proofs 84 3.1 ProofStrategies 84 3.2 ProofsInvolvingNegationsandConditionals 95 3.3 ProofsInvolvingQuantifiers 108 3.4 ProofsInvolvingConjunctionsandBiconditionals 124 3.5 ProofsInvolvingDisjunctions 136 3.6 ExistenceandUniquenessProofs 146 3.7 MoreExamplesofProofs 155 4 Relations 163 4.1 OrderedPairsandCartesianProducts 163 4.2 Relations 171 4.3 MoreAboutRelations 180 4.4 OrderingRelations 189 vii P1:JZZ/JZK 0521861241pre CB996/Velleman October19,2005 23:41 0521861241 CharCount=0 viii Contents 4.5 Closures 202 4.6 EquivalenceRelations 213 5 Functions 226 5.1 Functions 226 5.2 One-to-oneandOnto 236 5.3 InversesofFunctions 245 5.4 ImagesandInverseImages:AResearchProject 255 6 MathematicalInduction 260 6.1 ProofbyMathematicalInduction 260 6.2 MoreExamples 267 6.3 Recursion 279 6.4 StrongInduction 288 6.5 ClosuresAgain 300 7 InfiniteSets 306 7.1 EquinumerousSets 306 7.2 CountableandUncountableSets 315 7.3 TheCantor–Schro¨der–BernsteinTheorem 322 Appendix1:SolutionstoSelectedExercises 329 Appendix2:ProofDesigner 373 SuggestionsforFurtherReading 375 SummaryofProofTechniques 376 Index 381

Description:
Geared to preparing students to make the transition from solving problems to proving theorems, this text teaches them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it i
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.