ebook img

How Many Zeroes?: Counting Solutions of Systems of Polynomials via Toric Geometry at Infinity PDF

358 Pages·2021·9.091 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview How Many Zeroes?: Counting Solutions of Systems of Polynomials via Toric Geometry at Infinity

CMS/CAIMS Books in Mathematics Canadian Mathematical Society Société mathématique Pinaki Mondal du Canada How Many Zeroes ? Counting Solutions of Systems of Polynomials via Toric Geometry at Infinity CMS/CAIMS Books in Mathematics Volume 2 Series Editors Karl Dilcher Dalhousie University, Halifax, Canada Frithjof Lutscher University of Ottawa, Ottawa, Canada Nilima Nigam Simon Fraser University, Burnaby, Canada Keith Taylor Dalhousie University, Halifax, Canada Associate Editors Ben Adcock Simon Fraser University, Burnaby, Canada Martin Barlow University of British Columbia, Vancouver, Canada Heinz H. Bauschke University of British Columbia, Kelowna, Canada Matt Davison Western University, London, Canada Leah Keshet University of British Columbia, Vancouver, Canada Niky Kamran McGill University, Montreal, Canada Mikhail Kotchetov Memorial University of Newfoundland, St. John’s, Canada Raymond J. Spiteri University of Saskatchewan, Saskatoon, Canada CMS/CAIMS Books in Mathematics is a collection of monographs and graduate- level textbooks published in cooperation jointly with the Canadian Mathematical Society-SocietémathématiqueduCanadaandtheCanadianAppliedandIndustrial Mathematics Society-Societé Canadienne de Mathématiques Appliquées et Indus- trielles.Thisseries offers authorsthejoint advantageofpublishingwithtwomajor mathematical societies and with a leading academic publishing company. The se- ries is edited by Karl Dilcher, Frithjof Lutscher, Nilima Nigam, and Keith Taylor. The series publishes high-impact works across the breadth of mathematics and its applications. Books in this series will appeal to all mathematicians, students and established researchers. The series replaces the CMS Books in Mathematics series that successfully published over 45volumes in20 years. More information about this series at http://www.springer.com/series/16627 Pinaki Mondal How Many Zeroes? Counting Solutions of Systems fi of Polynomials via Toric Geometry at In nity 123 Pinaki Mondal Scarborough,ON, Canada ISSN 2730-650X ISSN 2730-6518 (electronic) CMS/CAIMS Booksin Mathematics ISBN978-3-030-75173-9 ISBN978-3-030-75174-6 (eBook) https://doi.org/10.1007/978-3-030-75174-6 MathematicsSubjectClassification: 14C17,14M25,52B20,14N10 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNature SwitzerlandAG2021 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseof illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland To my parents Purnima Mondal and Monojit Mondal Preface Inthisbookwedescribeanapproachthrough toricgeometrytothefollowing problem: “estimate the number (counted with appropriate multiplicity) of isolated solutionsofnpolynomialequationsinnvariablesoveranalgebraicallyclosedfield k.”Theoutcomeofthisapproachisthenumberofsolutionsfor“generic”systems intermsoftheir Newtonpolytopes,andanexplicitcharacterizationofwhatmakes a system “generic.” The pioneering work in this field was done in the 1970s by Kushnirenko, Bernstein and Khovanskii, who completely solved the problem of countingsolutionsofgenericsystemsonthe“torus”ðknf0gÞn.Inthecontextofour problem, however, the natural domain of solutions is not the torus, but the affine space kn. There were a number of works on extending Bernstein’s theorem to the case of affine space, and recently it has been completely resolved, the final steps having been carried out by the author. Theaimofthisbookistopresenttheseresultsinacoherentway.Westartfrom the beginning, namely, Bernstein’s beautiful theorem which expresses the number of solutions of generic systems on the torus in terms of the mixed volume of their Newton polytopes. We give complete proofs, over arbitrary algebraically closed fields, of Bernstein’s theorem, its recent extension to the affine space, and some other related applications including generalizations of Kushnienko’s results on Milnornumbersofhypersurfacesingularitieswhichin1970sservedasaprecursor to the development of toric geometry. Our proofs of all these results share several key ideas and are accessible to someone equipped with the knowledge of basic algebraicgeometry.Thisbookcanserveasacompaniontointroductorycourseson algebraic geometry or toric varieties. While it does not provide a comprehensive introductiontoalgebraicgeometry,itdoesdeveloptherelevantpartsofthesubject from the beginning (modulo some explicitly stated basic results) with lots of examples and exercises and can be used as a quick introduction to basic algebraic geometry. We hope the readers who take that undertaking will be rewarded by a deep understanding of the affine Bézout problem. vii viii Preface Acknowledgements. ItwasPierreMilman whowanted metowriteabook; it would not have been possible without his constant encouragement and support— with mathematics, and all sorts of things beyond mathematics—throughout these years.Eventhoughthescopeofthefinalversionisconsiderablylimitedcompared to his vision, I offer it as a first step. The encouragement from Eriko Hironaka workedasacatalystduringacriticalperiodwhentheprojectwasstuck.Isincerely thank Jan Stevens who sent numerous corrections after reading one of the earlier drafts. Najma Ahmad, Kinjal Dasbiswas, Naren Hoovinakatte, and especially, Jonathan Korman read parts of earlier drafts and gave important suggestions. Thanks are also due to the referees and editors, especially Keith Taylor, whose suggestionssignificantlyimprovedtheexposition.Overthelastfewyearsthework on this book took a great portion of my time owed to my friends and family, especiallymymotherPurnimaMondalandbrotherProtimMondol.Theapplication ofpointsatinfinitytoChickens’RoadCrossingproblemisduetoShatabdiSarker; its presentation given in this book is due to Tanzil Rashid. Scarborough, Canada Pinaki Mondal Contents Chapter I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. The problem and the results. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3. Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Chapter II. A brief history of points at infinity in geometry . . . . . . . . . 15 1. Points at infinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2. Homogeneous coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3. Projective space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Part 1. Preliminaries Chapter III. Quasiprojective varieties over algebraically closed fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1. Affine varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.1. Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2. (Ir)reducibility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.1. Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3. Regular functions, coordinate rings and morphisms of affine varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.1. Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4. Quasiprojective varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.1. Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5. Regular functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.1. Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 6. Morphisms of quasiprojective varieties; affine varieties as quasiprojective varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 6.1. Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 7. Rational functions and rational maps on irreducible varieties . . . . 48 7.1. Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ix x Contents 8. Product spaces, Segre map, Veronese embedding . . . . . . . . . . . . 51 8.1. Product spaces, Segre map . . . . . . . . . . . . . . . . . . . . . . . . 51 8.2. Veronese embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 8.3. Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 9. Completeness and compactification. . . . . . . . . . . . . . . . . . . . . . . 55 9.1. Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 10. Image of a morphism: Part I . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 10.1. Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 11. Dimension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 11.1. Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 12. Image of a morphism: Part II - Constructible sets . . . . . . . . . . . . 69 12.1. Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 13. Tangent space, singularities, local ring at a point. . . . . . . . . . . . . 72 13.1. The case of affine varieties . . . . . . . . . . . . . . . . . . . . . . . . 72 13.2. Intrinsicness of the tangent space; tangent spaces and singularities on arbitrary varieties . . . . . . . . . . . . . . . . . . . 73 13.3. Equations near a nonsingular point . . . . . . . . . . . . . . . . . . 76 13.4. Parametrizations of a curve at a nonsingular point . . . . . . . 77 13.5. Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 14. Completion of the local ring at a point . . . . . . . . . . . . . . . . . . . . 81 14.1. Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 15. Degree of a dominant morphism. . . . . . . . . . . . . . . . . . . . . . . . . 84 Chapter IV. (cid:2)Intersection multiplicity . . . . . . . . . . . . . . . . . . . . . . . . . . 89 1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 2. Closed subschemes of a variety . . . . . . . . . . . . . . . . . . . . . . . . . 90 2.1. Closed subschemes of an affine variety . . . . . . . . . . . . . . . 90 2.2. Closed subschemes of a quasiprojective variety . . . . . . . . . 91 2.3. Rational functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 2.4. Completeness and compactification of schemes . . . . . . . . . 94 2.5. Irreducible components, local rings . . . . . . . . . . . . . . . . . . 96 2.6. Cartier divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 3. Possibly non-reduced curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 3.1. (Reduced) Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.2. Order at a point on a possibly non-reduced curve . . . . . . . 99 4. Intersection multiplicity at a nonsingular point of a variety . . . . . 102 4.1. Intersection multiplicity of power series . . . . . . . . . . . . . . 102 4.2. Intersection multiplicity of regular functions . . . . . . . . . . . 103 4.3. Intersection multiplicity in a family. . . . . . . . . . . . . . . . . . 104 5. Intersection multiplicity of complete intersections . . . . . . . . . . . . 108 Chapter V. Convex polyhedra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 1. Basic notions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 1.1. Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.