JournalofLowTemperaturePhysicsmanuscriptNo. (willbeinsertedbytheeditor) S.Okada · D.A.Bennett · W.B.Doriese · J.W.Fowler · K.D.Irwin · S.Ishimoto · 4 M.Sato · D.R. Schmidt · D.S.Swetz · 1 H.Tatsuno · J.N.Ullom · S.Yamada 0 2 High-resolution kaonic-atom x-ray b spectroscopy with transition-edge-sensor e F microcalorimeters 9 1 26.07.2013 ] t e d Abstract We are preparing for an ultra-high resolution x-ray spectroscopy of - kaonic atoms using an x-ray spectrometerbased on an array of superconducting s n transition-edge-sensormicrocalorimetersdevelopedbyNIST.Theinstrumenthas i excellentenergyresolutionsof2–3eV(FWHM)at6keVandalargecollecting . s areaofabout20mm2.Thiswillopennewdoortoinvestigatekaon-nucleusstrong c interactionandprovidenewaccuratecharged-kaonmassvalue. i s y Keywords Kaonicatom,X-rayspectroscopy,Transition-edgesensor h p [ 1 Introduction 2 v Anynegativelychargedleptonsorhadrons(e.g., m −,p −,K−, p,S −)apartfrom 9 the conventional electrons can be bound by the Coulomb field of an atomic nu- 3 cleus.TheCoulomb-boundsystem,so-calledexoticatom,isessentiallyahydrogen- 0 8 likeatomexceptforitsshortlifetimeandthelargereducedmassresultinginun- . usuallysmallorbitalradii.Inthecaseofahadronfeelingstronginteractionwith 1 theatomicnucleus,so-calledhadronicatom,becauseofbeingshort-range force, 0 theeffectsappearinthemosttightlyboundenergylevelbeingthemostperturbed 4 1 : S.Okada·M.Sato·S.Yamada v RIKENNishinaCenter,RIKEN,Wako,351-0198,Japan i E-mail:[email protected] X r D.A. Bennett · W.B. Doriese · J.W. Fowler · K.D. Irwin · D.R. Schmidt · D.S. Swetz · a J.N.Ullom NationalInstituteofStandardsandTechnology,Boulder,CO80303,USA S.Ishimoto HighEnergyAcceleratorResearchOrganization,Ibaraki305-0801,Japan H.Tatsuno LaboratoriNazionalidiFrascati,INFN,I-00044Frascati,Italy 2 by the strong force as a shift from that given only by the electromagnetic in- teraction,and a broadening due to absorption of the hadron by the nucleus. The shiftandwidthcanbeexperimentallyextractedfromcharacteristicx-ray-emission spectroscopyofthehadronic-atomx-raysfeedingthelow-lyingstate.Thisoffers auniqueopportunitytoinvestigatethestronginteractionbetweenhadronandnu- cleus(ornucleon)atthelowenergylimitwhichisunobtainableintypicalscatter- ingexperiments. Anti-kaonK,namelyK−orK0,isthelightesthadroncontainingastrangeva- lencequark.Thelow-energyKNsystemhasattractedattentionasatestingground for chiral SU(3) dynamics in low-energy QCD and the role of the interplay be- tween spontaneous and explicit chiral symmetry breaking due to the relatively largemassofthestrangequark. Inthesimplestkaonicatom,i.e.,kaonichydrogen(K−p),the1s-atomic-state shift and width deduced from the spectroscopy of 2p–1s transition of the K−p atom x-rays at ∼6.5 keV are directly related to the real and imaginary parts of the complex K−p S-wave scattering length. Therefore the data have been inten- sivelycollectedsofar1,2,3.TheresultsindicatethatKN interactioninlowenergy is strongly attractive, which leads to particular interests in the depth of the real K−-nucleus potentialatzeroenergy inconnectionwithpossiblekaon condensa- tion in astrophysical scenarios (e.g., neutron star) and the possible existence of “deeply-boundnuclearK− states”. Manyexperimentshavecollecteddataonavarietyoftargetsotherthankaonic hydrogenatomsofar4.Despiteofthefactmostoftheoriesreproducethedata4,5, therehasbeenaconflictinthepotentialdepthbetweenphenomenologicalpoten- tials and potentials constructed from more fundamental approaches. The former aretypically180MeVdeep,whereasthelatterarelessthan50MeVdeep.Apart fromkaonic-atomexperiments,alotofexperimentalsearchforthedeeply-bound nuclear K− states have been performed in a past decade; however, only a small amount of information is available6,7, which is not sufficient to discriminatebe- tweenavarietyofconflictinginterpretations. Recently,thekaonic-heliumatom(K−-He)hasattractedinterestinconnection withthetheoreticalpredictions8,9 thatalargeshiftandwidthofthe2plevelmay appearneartheresonancebetweenatomicandnuclearpoles,whichiscloselyre- lated to the existence of deeply bound nuclear K− states. A recent calculation9 showstheshiftandwidthasafunctionoftherealpart(U )ofthepotentialdepth 0 atacertaincoupledpotentialdepth(U =120MeV)withthedifferentvaluesfor coupl K−-3HeandK−-4HeatomsasshowninFig.1.Thecalculationwasbasedonthe coupled-channelapproachbetweentheKN channelandtheSp decaychannel.A largeshiftof|e |∼10eVandwidthof|G |∼20eVarepredictedforK−-4He 2p 2p when the potential depth is at around ∼ 200 MeV, whereas most of theoretical calculations predict smaller values, e.g., e ∼ -0.2 eV and G ∼ 2 eV8. Mea- 2p 2p surementsof3d–2ptransitionsinK−-3He(6.2keV)andK−-4He(6.5keV)have beenperformedsofarwiththeconventionalsemiconductorspectrometershaving the FWHM energy resolution of typically ∼ 200 eV at 6 keV11,12,13, which is insufficienttoseesuchasmallspectraleffectsduetothestronginteraction. 3 Experiments Theories hift [eV]20 :: KK ----34 HHee K --4 He K --3 He 20 S10 10 el v e L p 0 0 2 E1 T2 @KEK-PS T3 (Japan) E2 E3 -10 -10 @DAΦNE (Italy) T1 ( Ucoupl = 120 MeV ) -20 -20 2006200720082009201020112012 0 100 200 300U0 [MeV] Publication year Fig.1 The2p-levelshiftofK−-3HeandK−-4Heatomsobtainedfromtherecentexperiments (left)atKEK-PS(E111)andDAF NE(E212,E313)comparedwiththetheoreticalcalculations (right).Arecentcalculationbytheuseofthecoupled-channelmodelasafunctionofthereal part(U )ofthepotentialdepthatacoupledpotentialdepthofU =120MeV(T19),compared 0 coupl withothercalculationsshowingshiftsbeingveryclosetozero(T24,T35).Experimentalresults sofararenotaccurateenoughtodistinguishbetweendifferentmodels. 2 Aproposedexperiment Aiming at a breakthrough to the current situation, we are planning to perform ultra-high-resolutionx-rayspectroscopyofkaonicatomsusinganarrayofNIST’s transition-edge-sensor (TES) microcalorimetershaving a FWHM energy resolu- tion of 2 – 3 eV at 6 keV, being two order of magnitude improved resolution compared with the conventional semiconductor detector. The TES is a thermal sensor that measures an energy deposition by the increase of resistance of a su- perconducting film biased within the superconducting-to-normal transition. The detailedworkingprinciplesandtherecentprogressoftheNIST’sTESsystemare describedinRefs.14,15.Apreliminaryresultofarecenttestmeasurementshowsan excellentFWHMtimeresolutionof∼0.5m secaswell.Nowwearepreparingan- othertestmeasurementatahadronbeamlinetoevaluateanin-beamperformance ofthex-rayspectrometer. We plan to use a NIST-designed 160 pixel TES array each having 350 m m square collecting area per pixel, being ∼20 mm2 in total, together with a time- divisionSQUIDmultiplexerreadoutsystem.Forthecryostat,weutilizeapulse- tubeadiabaticdemagnetizationrefrigerator(ADR)developedbyNISTandHPD, 102DENALI16,whosebasetemperatureis50mK.Thesizeofthissystemis33 cm×22cm×66cmtallwhichisrelativelyportableandcompact.Theportability isessentialforourexperimentconstrainedbyverylimitedandbusybeamtime. TheexperimentwillbeperformedatakaonbeamlineatJ-PARChadronhall, e.g.,K1.8BRbeamline17.Kaonsareproducedbybombardingtheproductiontar- get (Ni, Ag or Pt) with the primary proton beam from J-PARC 50 GeV proton synchrotron,andextractedthroughthekaonbeamline.Thekaonic-heliumatoms arecreatedbystoppingkaonsinaheliumtarget. Fig.2showsapossibleapossibleexperimentalsetup.Incidentkaonsextracted with a momentum of ∼ 900 MeV/c are degraded in carbon degraders, counted withbeamlinecounterstogetherwithLuciteCˇherenkovcountersforreducingthe 4 Cryostat for Liquid 3He & 4He target Cross section (flont view) Cryostat for x-ray detector system crAyoDsRtat He tank (TES microcalorimeter) (1.3 K) Kaonic x-rays Kaon beam Al shield TES array Helium 3 & 4 (50 mK) target cell Kaon beam (~ 100 ml, 1.3 K) detectors 10 cm 50 cm Kaon beam Fig.2 (Coloronline)Aschematicbirds-eyeview(left)andacrosssectionfrontview(right)ofa possibleexperimentalsetuparoundtheexperimentaltarget.Asetofbeamdetectors,acryogenic liquid-3Heand4Hetargetsystem,andaNIST’sTESx-rayspectrometersystemareshown. V e400 1 unts / 330500 TES microcalorimeter o C250 Fig.3 (Color online) Simulated spectraofofthe3d–2ptransitions 200 of kaonic-4He atoms detected by 150 differentx-raydetectors:aconven- Silicon drift detector X-rays from tional silicon drift detector with a 100 Compton scattering FWHM energy resolution of 190 50 eV at the energy, and a TES mi- 0 crocalorimeter with a FWHM en- 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 ergyresolutionof5eV. Energy (keV) pion contamination, tracked by a high-rate beamline drift chamber and stopped insidetheliquid-heliumtarget.Toensurethatkaonsarestoppedinthetarget,an anti-coincidence counter is installed just downstream side of the target. X-rays emittedfrom the K−-He atoms are detectedby a TES spectrometerviewing the targetfromaside. Themaintriggerwillbedefinedbythebeamlinecounterstoidentifyincom- ingkaonsandtheanti-coincidencecountertoensurestoppedkaonsinthetarget. X-ray signals of TES are coincident with the trigger to reduce accidental back- grounds. Fig.3 is a result of a GEANT4 simulation where K−-4He 3d–2p x-rays are measured by different two x-ray detectors. One is a typical conventional silicon driftdetectorusedinthepreviousexperiments11,12,13 havinga400-m m-thickac- tivelayerwith100mm2 collectingareaand190eV(FWHM)energyresolution. The other is a TES spectrometer having 5-m m-thick Bi absorbers with 20 mm2 collectingareaand5eV(FWHM)energyresolution. In theprevious experiment11, there has beena non-negligible effectof spec- tral distortion due to Compton scattering in the liquid 4He target. As shown in 5 Fig.3,theeffectiscompletelyseparatedfromthedistinctx-raypeakmeasuredby TES.Althoughtheotherexperiments12,13utilisedagaseousheliumtargetsoasto reducetheeffect,wecannowusealiquidheliumtargettoefficientlystopkaons withoutsufferingtheComptonscatteringproblem. Alotoffluorescencex-rays(e.g.,FeKa 1 6.40keV,FeKa 2 6.39keVandMn Kb 6.49 keV) and kaonic x-rays other than K−-He x-rays were possible serious background sources in the past experiments. In reversal, these are rather useful asgood calibrationlinesintheproposed measurementwithaTESspectrometer. Thepreciseenergycalibrationisessentialinsuchahighresolutionmeasurement; andthuswewillcarefullyselectourcalibrationsourcesofthefluorescencex-rays whoseenergies,widthandsatellitepeaksarewellknown.Moreoverasimultane- ous measurement of 3d–2p x-rays in K−-4He (6.5 keV) and K−-3He (6.2 keV) atoms witha mixedliquid3He and4He targetis possible,whichwill drastically reducesthesystematicerrorsofrelativex-rayenergiesandwidthsforbothatoms. ReferringtheyieldofK−-4He3d–2p x-rays obtainedintheprevious experi- ment11,theyieldwasroughly estimatedtobeabout 30eventsperdayassuming thattheJ-PARCK1.8BRbeamlineisemployedwithanoperationalprotonbeam power of 60 kW. Four-days data acquisitionwillgive about 120 eventsresulting in a statisticalerror of 0.1 eV in x-ray energy, assuming 2 – 3 eV (FWHM) en- ergy resolutionwithout background. Thus, we couldobtainmore thanone order ofmagnitudeimprovedstatisticalerrorsofthex-rayenergyandthewidthvalues comparedtothepreviousexperimentswithareasonabledataacquisitiontime. As well as K−-He atoms, there is another theoretical suggestion of a pre- cise measurement of 3d–2p x-rays in K−-6Li and K−-7Li (∼ 15 keV), whose resulthasapossibilitytodiscriminatebetweendeep(phenomenological)orshal- low(chiral)potentials18.Moreoverthereareotherremarkablestudiesusingultra- high-resolutionkaonicx-rayspectroscopieswithTESspectrometersweintendto performasfollows: 1. Charged kaon mass measurement:Kaonic-atom x-ray spectroscopyhas been alsoutilizedas a tool for measuring the charged kaon mass.The latestvalue isdeterminedbytheaverageofthesixmeasurementstobe493.677 ±0.013 MeV(S=2.4)19.Thisrelativelylargeerrormainlycomesfromtwodatawhose centralvaluesdiffervastlyabout60keV;thusanewaccuratemeasurementhas beeneagerlyawaited.Weaimtoimprovetheprecisionofthismassmeasure- ment with a high-precision measurement of K−-12C 5–4 x-ray (∼ 10 keV). Theprecisionisexpectedtobe∼2.5keVcorrespondingtotheaccuracyof∼ 0.05eVforthex-rayenergy. 2. Study of K− multi-nucleon absorption process: Recent theoreticalstudies of strong interaction effects in kaonic atoms suggest that analysing so-called ’lower’ and ’upper’ levels in the same atom could separate one-nucleon ab- sorption from multinucleonprocesses20. For this study, direct measurements ofupperlevelwidthsinadditiontolowerlevelwidthsareessentialformedium- weightandheavykaonicatoms(100–450keVx-rays)whosecandidateswere examined recently21. The measurements will be performed in future with a gamma-rayTESspectrometersimilartowhatNISThasalreadyachieved,hav- inga256pixelarrayresultingin5cm2collectingareaandanaveragedFWHM energyresolutionof53eVat100keV15. 6 3 Conclusions Wearepreparinganext-generationkaonic-atomx-rayspectroscopyusinganx-ray spectrometerbasedonanarrayofsuperconductingTESmicrocalorimetersdevel- opedbyNIST.Precisemeasurementsof3d–2px-raysinkaonic-heliumatoms(∼ 6 keV) and kaonic-lithium atoms (∼ 15 keV) with two order of magnitude im- proved energy resolution compared with the conventional silicon detectors will enableustoseesmallspectraleffectsduetothestronginteraction.Thiswilladd a fresh dimension to the study of the depth of the real K−-nucleus potential at zeroenergyinconnectionwiththeexistenceofdeeply-bound nuclearK− states. Additionally,weintendtoimprovethe precisionofthe chargedkaon massmea- surementwithhigh-precisionmeasurementofK−-12C5–4x-ray(∼10keV),and studytheK−multi-nucleonabsorptionprocessinfuturewithdirectmeasurements of upper level widths in medium-weight and heavy kaonic atoms using a multi- pixelTESspectrometerwithauseabledynamicrangeabove400keV. Acknowledgements ThisworkwassupportedbyJSPSKAKENHIGrantNumber25105514 andbyIncentiveResearchGrantfromRIKEN. References 1. M.Iwasaki,etal.,Phys.Rev.Lett.78(1997)3067; T.M.Ito,etal.,Phys.Rev.C58(1998)2366. 2. G.Beer,etal.(DEARCollaboration),Phys.Rev.Lett.94(2005)212302. 3. M.Bazzi,etal.(SIDDHARTACollaboration),Phys.Lett.B704(2011)113; M.Bazzi,etal.(SIDDHARTACollaboration),Nucl.Phys.A881(2012)88. 4. C.J.Batty,E.FriedmanandA.Gal,Phys.Reports287,385(1997). 5. S.Hirenzaki,Y.Okumura,H.Toki,E.Oset,andA.Ramos,Phys.Rev.C61, 055205(2000). 6. M.Agnelloetal.,Phys.Rev.Lett.94,212303(2005). 7. T.Yamazakietal.,Phys.Rev.Lett.104,132502(2010). 8. C.J.Batty,Nucl.PhysA508(1990)89c. 9. Y. Akaishi, proceedings for International Conference on Exotic Atoms (EXA05),AustrianAcademyofSciencesPress,Vienna,2005,p.45. 10. E.Friedman,privatecommunication. 11. S.Okada,etal.,Phys.Lett.B653(2007)387. 12. M.Bazzi,etal.(SIDDHARTACollaboration),Phys.Lett.B681(2009)310. 13. M.Bazzi,etal.(SIDDHARTACollaboration),Phys.Lett.B697(2011)199. 14. C. Enss (ed.), Cryogenic ParticleDetection,Topics in Applied Physics, vol. 99,Springer,2005. 15. D.A.Bennettetal.,Rev.Sci.Instrum.83(2012)093113. 16. http://www.hpd-online.com 17. K.Agarietal.,Prog.Theor.Exp.Phys.(2012)02B011. 18. S.Hirenzaki,Privatecommunication. 19. J.Beringeretal.(ParticleDataGroup),Phys.Rev.D86(2012)010001. 20. E.Friedman,A.Gal,Nucl.Phys.A899(2013)60. 21. E.FriedmanandS.Okada,Nucl.Phys.A915(2013)170.