ebook img

Ground remediation : a practical guide for environmental engineers and scientists PDF

404 Pages·2017·4.253 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Ground remediation : a practical guide for environmental engineers and scientists

Groundwater Remediation Scrivener Publishing 100 Cummings Center, Suite 541J Beverly, MA 01915-6106 Publishers at Scrivener Martin Scrivener ([email protected]) Phillip Carmical ([email protected]) Groundwater Remediation A Practical Guide for Environmental Engineers and Scientists Edited by Nicholas P. Cheremisinoff This edition first published 2017 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA © 2017 Scrivener Publishing LLC For more information about Scrivener publications please visit www.scrivenerpublishing.com. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or other- wise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions. Wiley Global Headquarters 111 River Street, Hoboken, NJ 07030, USA For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com. Limit of Liability/Disclaimer of Warranty While the publisher and authors have used their best efforts in preparing this work, they make no rep- resentations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchant- ability or fitness for a particular purpose. No warranty may be created or extended by sales representa- tives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further informa- tion does not mean that the publisher and authors endorse the information or services the organiza- tion, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Library of Congress Cataloging-in-Publication Data ISBN 978-1-119-40757-7 Cover images: Wind turbine, Rachwal | Dreamstime.com . Water, Sang Lei | Dreamstime.com Cover design by: Kris Hackerott Set in size of 11pt and Minion Pro by Exeter Premedia Services Private Ltd., Chennai, India Printed in USA. 10 9 8 7 6 5 4 3 2 1 Contents Preface xi About the Author xv 1 Conducting Groundwater Quality Investigations 1 1.1 Introduction 1 1.2 Evolution of Site Assessments 2 1.3 Technology Limitations and Cleanup Goals 14 1.4 Conceptual Models 14 1.4.1 Source and Release Information 15 1.4.2 Geologic and Hydrogeologic Characterization 16 1.4.3 Contaminant Distribution, Transport and Fate 17 1.4.4 Geochemistry Impacting Natural Biodegradation 17 1.5 Risk Assessment Concepts 18 1.6 Institutional Controls 20 1.7 Risk-Based Cleanup Goals and Screening Level Evaluations 20 1.8 Assessing Plume Migration Potential 25 2 The Family of DNAPLs 37 2.1 Defining DNAPL 37 2.2 Chemicals and Origins 38 2.2.1 Creosote and Coal Tars 38 2.2.2 Polychlorinated Biphenyls 41 2.2.3 Chlorinated Solvents 44 2.2.4 Mixtures 48 2.3 DNAPL Behavior 49 2.3.1 General Behavior and Concepts 49 2.3.2 Important Parameters for Site Characterization 56 v vi Contents 2.4 Overview of Remediation Strategies 59 2.4.1 Remediation Goals 59 2.4.2 Technologies 63 2.4.2.1 Pump-and-Treat 63 2.4.2.2 Permeable Reactive Barriers 63 2.4.2.3 Physical Barriers 64 2.4.2.4 Enhanced Biodegradation 64 2.4.2.5 Thermal Technologies 64 2.4.2.6 Chemical Flushing 65 2.4.2.7 Excavation and Removal 65 2.4.2.8 Soil Vacuum Extraction 66 2.4.2.9 Water Flooding 66 2.4.2.10 Air Sparging 66 3 Hydrocarbons 69 3.1 Fate and Transport 69 3.1.1 General 69 3.1.2 Advective Transport 70 3.1.3 Dispersion 70 3.1.4 Sorption 71 3.1.5 Dilution and Recharge 73 3.1.6 Volatilization 73 3.2 Gasoline Compounds 74 3.2.1 General Description 74 3.2.2 The BTEX Compounds and MTBE 74 3.2.3 Properties of VOCs 75 3.2.4 Degradation 75 3.2.5 Half-Lifes 77 3.3 Pump and Treat 79 3.3.1 Concept 79 3.3.2 Non-Aqueous Phase Liquids 85 3.3.3 Contaminant Desorption and Precipitate Dissolution 86 3.3.4 Remedial Technologies 87 3.3.5 EPA Cost Data for Pump-and-Treat 89 4 1,4-Dioxane 95 4.1 Overview 95 4.2 Properties, Fate and Transport 98 4.3 Health Effects and Regulations 103 Contents vii 4.4 Remediation Technologies 104 4.4.1 Advanced Oxidation (Ex Situ) 109 4.4.2 Adsorption (GAC) (Ex Situ) 113 4.4.3 Bioremediation 113 4.4.4 Treatment in Soil 114 5 Perfluorinated Compounds (PFCS) 117 5.1 Overview 117 5.2 Origins of the Contaminants 118 5.3 PFAs Properties and Structures 121 5.3.1 General Description 121 5.3.2 Variations of PFAS 123 5.3.3 PFOS 126 5.3.4 PFOA 129 5.4 Environmental Fate and Transport 130 5.5 Groundwater Contamination 144 5.6 Water Treatment 149 5.7 Estimating Carbon Treatement Costs 157 6 Chlorinated Solvents 163 6.1 Physico-Chemical Properties of Chlorinated Solvents 163 6.2 Origins of Groundwater Contamination 167 6.3 Fate and Transport 168 6.3.1 Properties 168 6.3.2 Degradation and Daughter Products 170 6.3.3 Biodegradation Half-Life 173 6.3.4 DNAPL Migration 185 6.4 Groundwater Remediation Strategies 188 6.4.1 Preliminary Considerations 188 6.4.2 Soil Excavation, Treatment and Disposal 195 6.4.3 Soil Vapor Extraction 197 6.4.4 Enhanced Methods of Soil Vapor Extraction 201 6.4.5 In Situ Air Sparging 202 6.4.6 Enhanced Biodegradation 210 6.4.7 In-well Aeration and Recirculation 215 6.4.8 Reactive and Permeable Walls 216 6.5 Costs 217 6.5.1 Soil Excavation, Treatment and Disposal 217 6.5.2 Soil Vapor Extraction 220 6.5.3 Air Sparging Comparisons to other Technologies 227 viii Contents 7 Mineral Ions and Natural Groundwater Contaminants 233 7.1 Overview 233 7.2 Secondary Drinking Water Standards 236 7.3 Irrigation Water Quality Standards 238 7.3.1 Salts 238 7.3.2 Water Analysis Terminology 238 7.3.3 Types of Salt Problems 239 7.3.4 Salinity Hazard 241 7.3.5 Sodium Hazard 242 7.3.6 Trace Elements and Limits 242 7.4 Water Treatment Membrane Technologies 247 7.4.1 Overview 247 7.4.2 Reverse Osmosis (RO) 248 7.4.3 Nanofiltration 255 7.4.4 Microfiltration 258 7.4.5 Ultrafiltration 260 7.4.6 Treatment Costs 262 7.4.7 Secondary Wastes 265 7.4.8 Selection Criteria 265 7.5 Ion Exchange 266 7.5.1 Technology Description 266 7.5.2 Chelating Agents 271 7.5.3 Batch and Column Exchange Systems 272 7.5.4 Process Equipment 272 7.5.5 Cost Data 275 7.6 Crystallization 279 7.6.1 Technology Description 279 7.6.2 Forced-Circulation Crysallizers 286 7.6.3 Draft-tube Crystallizers and Draft-tube-baffle Crystallizers 288 7.6.4 Surface-Cooled Crystallizers 289 7.6.5 Oslo Crystallizers 291 7.6.6 Fluid-Bed Type Crystallizers 292 8 Heavy Metals and Mixed Media Remediation Technologies for Contaminated Soils and Groundwater 299 8.1 Nature of the Problem 299 8.2 Toxic Metal Chemical Forms, Speciation 300 and Properties Contents ix 8.3 Remedial Technology Strategies 306 8.3.1 Isolation 306 8.3.2 Capping 306 8.3.3 Subsurface Barriers 313 8.3.4 Immobilization 315 8.3.5 Solidification/Stabilization 317 8.3.6 Vitrification 321 8.3.7 Toxicity and Mobility Reduction 323 8.3.8 Wet Oxidation Process 331 8.3.9 Advanced Oxidation Technologies 333 8.3.10 Permeable Treatment Walls 343 8.3.11 Biological Treatment 344 8.3.12 Physical Separation 346 8.3.13 Extraction 349 8.3.14 Soil Washing 349 8.3.15 Soil Screening 350 8.3.16 Chemical Treatment 350 8.3.17 Physical Treatment 351 8.3.18 Pyrometallurgical Extraction 352 8.3.19 In Situ Soil Flushing 352 8.3.20 Electrokinetic Treatment 352 8.4 Cost Data 353 8.4.1 General Cost Information 353 8.4.2 Site Capping 356 8.4.3 In situ Solidification/Stabilization 358 8.4.4 Ex Situ Solidification/Stabilization 361 8.4.5 Soil Washing 365 8.4.6 Slurry Walls 367 Index 379

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.