Mon.Not.R.Astron.Soc.000,1–16(2013) Printed12January2017 (MNLATEXstylefilev2.2) Globular clusters with Gaia E. Pancino1,2(cid:63), M. Bellazzini3, G. Giuffrida4,2, S. Marinoni4,2 1INAF-OsservatorioAstrofisicodiArcetri,LargoEnricoFermi5,50125,Firenze,Italy 2ASIScienceDataCenter,ViadelPolitecnicoSNC,I-00133Rome,Italy 3INAF-OsservatorioAstronomicodiBologna,ViaRanzani1,40127,Bologna,Italy 4INAF-OsservatorioAstronomicodiRoma,ViadiFrascati33,00044MonteporzioCatone,Italy 12January2017 7 1 0 ABSTRACT 2 n The treatment of crowded fields in Gaia data will only be a reality in a few years from a now.Inparticular,forglobularclusters,onlytheend-of-missiondata(publicin2022–2023) J willhavethenecessaryfullcrowdingtreatmentandwillreachsufficientqualityforthefaintest 1 stars. As a consequence, the work on the deblending and decontamination pipelines is still 1 ongoing. We describe the present status of the pipelines for different Gaia instruments, and wemodeltheend-of-missioncrowdingerrorsonthebasisofavailableinformation.Wethen ] A apply the nominal post-launch Gaia performances, appropriately worsened by the estimated crowding errors, to a set of 18 simulated globular clusters with different concentration, dis- G tance,andfieldcontamination.Weconcludethattherewillbe103–104 starswithastrometric h. performancesvirtuallyuntouchedbycrowding(contaminatedby<1mmag)inthemajoritiy p of clusters. The most limiting factor will be field crowding, not cluster crowding: the most - contaminatedclusterswillonlycontain10–100cleanstars.Wealsoconcludethat:(i)thesys- o temicpropermotionsandparallaxeswillbedeterminedto1%orbetterupto(cid:39)15kpc,andthe tr nearbyclusterswillhaveradialvelocitiestoafewkms−1 ;(ii)internalkinematicswillbeof s unprecendentedquality,clustermasseswillbedeterminedto(cid:39)10%upto15kpcandbeyond, a [ anditwillbepossibletoidentifydifferencesofafewkms−1orlessinthekinematics(ifany) ofclustersub-populationsupto10kpcandbeyond;(iii)thebrighteststars(V(cid:39)17mag)will 1 havespace-quality,wide-fieldphotometry(mmagerrors),andallGaiaphotometrywillhave v 1–3%errorsontheabsolutephotometriccalibration. 3 0 Keywords: astrometry–parallaxes–globularclusters:general 0 3 0 . 1 1 INTRODUCTION forallsources.GaiawaslaunchedinDecember2013(deBruijne, 0 Rygl,&Antoja2014),andthefirstdatareleasewasinSeptember 7 TheESA1 (EuropeanSpaceAgency)spacemissionGaia2 (Perry- 1 2016 (Gaia Collaboration et al. 2016b), containing positions and man et al. 2001; Mignard 2005; Gaia Collaboration 2016a; Gaia : white-light magnitudes for the best behaved stars, and additional v Collaboration et al. 2016b) is the successor of Hipparcos (Perry- informationlikeparallaxesandpropermotionsfor(cid:39)2millionstars i manetal.1997),withthegoalofprovidingastrometryforbillions X observedpreviouslywithTycho-2(Høgetal.2000;Michalik,Lin- ofpoint-likesourcesacrossthewholesky,withanerrorof24µas- degren,&Hobbs2015;Lindegrenetal.2016). r levelforstarsofG(cid:39)15mag.Gaiawillalsoprovidebroadbandmag- a Gaia will observe not only stars, but also tens of thousands nitudes and colours for all sources, down to the Gaia white-light magnitude of G=20.7 mag (V(cid:39)21 mag). Low-dispersion spectra ofquasars,unresolvedgalaxies,Solarsystemobjects,manytran- sientandvariableobjectslikesupernovae,andfinallytheinterstel- will also be obtained in two broad bands with the red and blue lar medium (Altavilla et al. 2012; Ducourant et al. 2014; Eyer et spectrophotometers(BPandRP).Finally,Gaiawillproducespec- al.2014;deBruijneetal.2015;Proft&Wambsganss2015;Zwit- tra in the calcium triplet region with the RVS (the Radial Veloc- ityspectrometer)downtoG(cid:39)17mag,fromwhichradialvelocities ter&Kos2015;Bachchan,Hobbs,&Lindegren2016;Tangaetal. 2016).Gaiawillalsoposeachallengebecauseofitsdataamount (RVs). Object classification and parametrization will be possible andcomplexity,pushingtheastrophysicalcommunityfartherinto thepathofbigdataanddatamining(GaiaCollaboration2016a). (cid:63) email:[email protected] Gaiaislimitedindensestellarfields,owingtotheon-board 1 A list of the acronyms used in this paper (Table A1) can be found in and downstreamtelemetry bandwidth.For spectroscopy,an addi- AppendixA. tionallimitationisprovidedbythelargephysicalsizeofthedis- 2 http://www.cosmos.esa.int/web/gaia persed images and spectra on the focal plane. This has particular (cid:13)c 2013RAS 2 Pancinoetal. Table1.AdoptedGaiarelevantquantities.WenotethattheAFwindow sizesarerelevantfortheastrometry;theBP/RPsizesforthephotometry, chromaticitycorrection,andobjectclassificationandparametrization;the RVSwindowsizesarerelevantforradialvelocity,objectparametrization andabundanceanalysis. Size Size Description (”) (pix) 0.176789 1(AC) Acrossscan(AC)pixelsize 0.058933 1(AL) Alongscan(AL)pixelsize 0.176789 3(AL) GaiaPSF 2.121468 12(AC) ACwindowsize(AF,BP,andRP) 0.070720 12(AL) ALwindowsize(AF)a 1.767890 10(AC) ACwindowsize(RVS) Figure1.TheGaianominalpassbandsfortheastrometricfield(G-band), 3.535980 60(AL) ALwindowsize(BPandRP) theblueandredspectrophotometers(BPandRP),andtheradialvelocity 74.785977 1269(AL) ALwindowsize(RVS) spectrometer(RVS).FigurecourtesyofC.Jordi. aInsomeCCDcolumnsinAF,aswellasintheSMCCDcolumns,the windowsarelongertoallowforbackgroundmeasurementsaroundthe relevanceforstudiesoftheGalacticplane,thebulge,andglobular sources.Thelongerwingsofthesewindowscaninprinciplebeusedalso clusters (hereafter, GCs). In the first few Gaia data releases, dis- tocheckthesourceprofilebehaviourourtsidenormalwindowlimits. turbed sources like binaries, multiple stars, and stars in crowded fields will likely not be part of the released material (Gaia Col- • theAF(AstrometricField),providesastrometryandphotom- laboration et al. 2016b). In any case, the inclusion of a sufficient etryofpoint-likesourcesintheG-band,awhite-lightpassbandde- sampleofstarsatthemainsequenceturn-offpointorfainter–with finedbythetelescopeandinstrumenttransmissionandbytheCCD good quality measurements – is very important for GC research. quantumefficiency(Figure1); Therefore, only the latest few Gaia releases (2020–2023) are ex- • theBPandRPprovidelowresolutionspectra(R=λ/δλ=20- pected to provide a significant breakthrough in GC research. To 100)intherangesshowninFigure1,andtheintegratedG and preparethework,weexploreinthispapertheexpectedbehaviour BP G magnitudes;thespectraarenecessaryforthechromaticitydis- of Gaia data in several simulated Galactic GCs, adopting the of- RP placementcorrectioninastrometricmeasurements; ficialpost-launchGaiascienceperformancesandsomesimplified • theRVS,providesR(cid:39)11700spectrainthecalciumtripletre- recipestodescribeadditionaldeblendingerrorcomponents,based gion,forstarsdowntoG(cid:39)17mag,dependingontheobject. on the Gaia deblending pipelines. A very preliminary – and now outdated–versionofthisworkwaspresentedbyPancino,Bellazz- Tosavetelemetrybandwidth,giventheenormousamountof ini,&Marinoni(2013). dataproduceddailybyGaia,observationsineachinstrumentsare The paper is organized as follows: in Section 2 we describe onlytransmittedforpixelscontainedinrectangularwindows,that thecurrentstatusofcrowdingtreatmentinGaia;inSection3we followthedetectedpoint-likeobjectsalongthefocalplane.Forthe present our crowding errors modeling; in Section 4 we describe faintstars,dataintheallocatedwindowsarebinnedintheACdi- oursimulatedclustersandthecomputationofGaiaobservedquan- rectionbytheon-boardprocessingsoftware.Theadoptedwindow titiesandfinalerrors;inSection5weexplorethesimulationsand sizesandrelevantquantitiesforourtreatmentofcrowdingarelisted show the potential of Gaia data for GC studies; in Section 6 we inTable1.MoreinformationcanbefoundintheGaiamissionpa- summarizethemainresultsanddrawourconclusions. per(GaiaCollaboration2016a). 2.1 Gaiadeblendinganddecontaminationpipelines 2 CROWDINGINGAIADATA Crowdingtreatmentideallyrequiresapreliminaryevaluationofthe Asmentionedintheprevioussection,Gaiaisacomplexspacemis- sion,withtwodifferenttelescopesprojectingtheirlightonalarge crowding conditions of each source and transit, based on knowl- common focal plane, captured by 106 different CCDs (Charged- edgeofthescene,i.e.,thedistributionandcharacteristicsofallthe CoupledDevices),andpassingthroughdifferentinstruments.Gaia neighbouringsources,ascollectedbeforethecurrentobservation. Different pipelines are employed for different instruments and to scansthewholeskybyprecessingitsspinaxis,anddescribinggreat treatdifferentcases.Herebelowwedescribethecurrentstatusof circlesontheskythatslowlydriftwithitsprecession.Eachregion isscannedfromaminimumof(cid:39)40times,toamaximumof(cid:39)250 theonesthatarerelevantforthepresentstudy. times,withanaveragenumberof(cid:39)70passagesfortheAF,BPand RP, and (cid:39)40 passages for RVS. All the CCDs in the focal plane 2.1.1 AFdeblending arereadinTDI(Time-DelayedIntegration)modetocloselyfollow Gaia’smovementacrossthesky.Onthefocalplane,stars“move” StarscloserthantheGaiaPSFwidth(whichisassumedhere3tobe alongthescanningdirection,encounteringdifferentinstruments: 0.177”,seealsoTable1)canberecognizedasblendsalreadyinthe • thefirsttwocolumnsoftheCCDarrayarecalledSkyMappers (SM), and they are used for the on-board detection of point-like 3 Thevalueweadoptedisaconservativeestimate.TheGaiaeffectivePSF sources;eachoftheSMcolumnsseesonlylightfromoneofthe variesacrossthefieldofviewandhasamedianvalueof0.103”(Fabricius twotelescopes; etal.2016). (cid:13)c 2013RAS,MNRAS000,1–16 GlobularclusterswithGaia 3 1 2 3 4 a)# 6 5 7 b)# 10 8 9 11 c)# 1 Figure2.AnillustrationofthecrowdingeffectsonBPandRPdispersed Figure3.SimplifieddescriptionoftransitsinBP/RP.Incase(a),twostars images,withtheirassignedwindows(blackrectangles).Differentcasesare arecloserthanhalftheACwindowsize,andnomattertheorientationof represented,somegoingbeyondthescopeofthepresentpaper.Starsare thesatellite,theywillalwaysbeassignedthesamewindow(ortruncated representedbytheirsurfacedensityprofiles(solidcontours),withtheout- windows).Incase(b),twostarshaveadistancethatisinbetweentheAC mostcontoursatthebackgroundlevel.Thebrighteststar(G=15mag)is andALhalfwindowsizes,anddependingontheorientation,theyaresome- inwindow(2),whilethefaintestone(G=20mag)isinwindow(1).Stars timesassignedthesamewindow(ortruncatedwindow),sometimesdiffer- fainterthantheGaiamagnitudelimit(G=20.7mag)areassignednowin- entwindows.Dependingontheirbrightness,theycanstillcontaminateeach dow,likeforstar(3).Thecolouredportionsofthewindowsaretheback- other’swindow.Incase(c),thestarsarefartherapartthantheALwindow groundsamples,ingreenwhentheyarefreefromcontamination,andin size,andtheyarealwaysassignedtwodifferentwindowsbut,ifoneofthe redwhentheyarecontaminatedandcannotbeused.Whenstarsaretoo twostarsisverybright,itcanstillcontaminatetheothersignificantly. close,theycanbeassignedtothesamewidowortwo(ormore)truncated windows,likeincases(9),(10),and(11).Therearealsoemptywindows s (virtualobjects)likeincase(6).FigurecourtesyofA.Brown. the window (contaminants, with D<3.54”). This is illustrated in Figure2,wheredifferentcasesareshowntogetherwiththeback- astrometricprocessingofAFdata.Theseblendscanbedetected, groundevaluationregions,andinFigure3,showinghowthediffer- forexample,fromthehigherrorsinthecentroiddeterminationand ingorientationandALprojecteddistancebetweensourcesaffects itswobblingfromonetransittoanother,orbyphotometricvariabil- windowassignment. ity,radialvelocityvariability,oringeneralbecausethefitsofthe Forblendedsources,therearedifferentpipelinesthatcanbe PSForLSFtothedatashowlargeresidualsorrequiremorethan used in different phases of the mission. Blind pipelines (without onecomponent. knowledgeofthescene)canbeappliedintheinitialphases,when Assessing whether a star is isolated or has detected or sus- thehistoryofeachsourceindifferentinstrumentshasnotbuiltupto pected companions is a crucial task. Multiple or blended objects asufficientlevel.Thetwo(ormore)blendedsourcescanberoughly areredirectedtotheNSS(Non-SingleStars)pipelinewhereanat- modeledwithoutaprioriknowledgeoftheirexactpositions,astro- tempt to model them as binary systems is carried out (Gaia Col- physical parameters, and fluxes, just by modeling them with two laboration2016a;Pourbaix2011).Ifnoneoftheavailablebinary overlappingspectralenergydistributions.Thisapproachwassuc- models or configurations produces a good fit to the data, then a cessfullyappliedtoGaiacommissioningdata4 ofbrightstars,re- stochasticmodelisemployedtoderivepreliminaryparametersof coveringthevastmajorityoftheTicho-2binaryanddoublestars. thesecondary(ortertiaryandsoon)source.Thereforewecanas- Onceafewtransitsareaccumulated,theycanbebetterdisentan- sumethat–consideringalsothesmallGaiaPSF–thevastmajority glediftheyaremodeledsimultaneously(persourceratherthanper ofNSSwillbeknown. transit),evenifthereisstillnotenoughinformationonthescene, StarsthatarefurtherapartthanthetinyGaiaPSFareeasily improvingthequalityofthereconstruction.Finally,oncethescene deblended by the PSF fitting algorithms, with results much more is well characterized and the history of the source is well devel- similartoHST(HubbleSpaceTelescope)thantotypicalground- oped,otherparametersofthemodelinglikethespectraltype,the based telescopes. This is the main reason why – as we will see projecteddistanceofthesourcesalongscan,andtherelativefluxes, in the following – astrometric measurement uncertainties (and G canbeusedtofurtherimprovetheinvolvedsourcesreconstruction. magnitudes)areingenerallessaffectedbycrowding,unlikeBP/RP For contaminated sources, it is necessary to know well the andRVSmeasurements. flux of the contaminating sources around, thus knowledge of the scene is necessary. Each known source is modeled to reconstruct 2.1.2 BPandRPdeblendinganddecontaminationpipelines the flux even at large distances from the window (especially for brightstars).Theamountofreconstructedcontaminatingfluxfrom BP and RP transits of sources that are not isolated will be called neighboringsourcesiscomputedineachpixelofthecontaminated here either blended or contaminated. The idea is that when the sourcewindow,andsubtracted.Forallthesereasons,decontamina- sources are so close that they occupy the same window or inter- tionwillhavetobeperformedcontextuallywiththescenerecon- fering windows in the vast majority of the transits (blends, with structionandcrowdingevaluation. D<2.12”),theywillrequireadifferenttreatmentthanobjectsthat willoftenbeassignedwellseparatedwindows,ortransitsthatare just altered by the flux of a bright source that is well outside of 4 http://www.cosmos.esa.int/web/gaia/iow20150226 (cid:13)c 2013RAS,MNRAS000,1–16 4 Pancinoetal. pipeline, called Source Environment Analysis (SEA) pipeline, is basedontheFastStackimagereconstruction(Harrison2011;Gaia Collaboration 2016a). The initial tests are promising and the re- constructedimagescouldbeuseful,amongotherthings,totestand improvethedeblendinganddecontaminationpipelinesaswell. Therefore, the simulations presented in this paper, being basedonthecurrentstatusofthedeblendinganddecontamination pipelines,havetobeseenasgenerallypessimistic. 2.2 AnoteaboutcompletenessinGaiadata AparticularlimitationoftheGaiadesignisrelatedtothenumber of simultaneous object and background (virtual object) windows Figure4.Effectoftheon-boarddetectiononcompleteness.TheBP/RPim- thatcanbeallocatedbytheon-boarddetectionalgorithmineach ageofaGCwassimulatedwithGIBIS(GaiaInstrumentandBasicImage CCDandinanygivenmoment.Thisnumbervariesfrom(cid:39)35000 Simulator, Babusiaux 2005). The green rectangles are the assigned win- to1050000objectspersquaredegree,dependingontheinstrument dows.Thereisanapparentlossofstarsaboveandbelowtheclustercenter, (seeGaiaCollaboration2016a,formoredetails).Areasofthesky where the AC stellar density is lower and windows have a lower proba- that can suffer from this limitation are clearly the Galactic bulge biliyofbeingassignedtoasource.Thepercentageofstarslostisroughly constantwithstellardensityineachtransit,buteachtransithasadifferent andplane,andallotherfieldsofviewthathappentooverlapthem on the Gaia focal plane7. More relevant to the present study, the orientation.Asaresults,theend-of-missionincompletenesswilltendtobe flatterwithdistancefromthecenterthaninusualGCphotometries. limitation applies to the central regions of GCs, where the local stardensitycanbeveryhigh. Atthesingletransitlevel,completenessisalsoinfluencedby 2.1.3 RVSdeblendinganddecontaminationpipelines theon-boarddetectionalgorithm.EverysourcethatenterstheSM The deblending phylosophy adopted by RVS is slightly differ- isassignedawindow,prioritizingbrighterobjectsdowntothelim- itingmagnitude.Thewindowsfollowthestarsalongthefocalplane ent from the one adopted in AF, or BP and RP. The deblending asGaiascansthesky,andwhenthestarsexitthefield,thewindow- pipelinesarebeingadaptedandreweittentomitigatethestraylight slotsare“freed”andcanbeassignedtonewsourcesagain.Forthis issues found after launch5 (Mora et al. 2016) that impact mostly reason, the central dense areas of the clusters will – statistically onRVSspectra,withanexpectedlossof(cid:39)1.4maginsensitivity speaking–containmore(bright)stars,andthusobtainmorewin- (Seabroke et al. 2016). We therefore based our modeling of de- dowswithrespecttotheperipheryofthecluster,intheACdirec- blendingerrorsonapreviousalgorithmthatwasbasedongeneral tion.Differentscans,orientedintheskywithdifferentangles,will geometricalconsiderations(AllendePrieto2008). loosedifferentstarsandthusattheend-of-mission,eachstarthat The treatment of contamination is instead part of the back- is not entirely lost will have lost part of its transits. This is illus- groundtreatment,thatisavitalpartofRVSprocessing,becauseof tratedinthesimulatedclusterinFigure4,andisalsovisibleinthe thelengthofthespectra(seeTable1).Thebackgroundisdivided indiffusedandpoint-like,andtreatedseparately.Inbothcases,a ωCentauriactualGaiadatashowninapressrelease8. We do not attempt to simulate these completeness effects in modelingtakesplacebasedonknowledgeofthesceneandallavail- thepresentpaper,astheywouldrequireafullend-of-missionsim- abledataonstraylightandnearbyobjects.Themodelproducesan ulationofdifferentlinesofsightinthesky,includingthedetailed estimateofthetotalbackgroundintheRVSwindowsthatissub- behaviouroftheon-boarddetectionalgorithms. tracted from the source signal. Clearly, the model becomes more andmoreaccurateasGaiadataareprogressivelyaccumulatedand therefore the best results will be obtained towards the end of the mission(K.Janssen,H.E.Huckle,andG.Seabroke,2015,private 3 MODELINGOFCROWDINGERRORS communication). As mentioned above, our goal is to illustrate what Gaia can do forGCstudies,ratherthanattemptingarigoroussimulationofde- 2.1.4 Imagereconstructionandfuturepossibilities blendingerrors.Therefore,wewillmodelavailablesimulationsof crowdedGaiadata,toderivesimpleformulaeswithasfewfreepa- To facilitate the study of crowded areas, two paths are being fol- rametersaspossible. lowed.Ontheonehand,somecrowdedregionslikethecenterof The crowding error models derivation for different Gaia in- ω Centauri or NGC 1818 in the Magellanic Cloud were imaged strumentsanddifferenttypesofblendsaredescribedinthefollow- andtransmittedtothegroundin2DmodeintheSM6,duringcom- ing sections. The models describe the expected percentage errors missioning, and further regions might be observed in 2D during on flux caused by crowding as a function of relevant parameters the mission lifetime. The goal of these 2D images is to fully re- constructthescenearoundeachGaiasourcetohelpimprovingand testingthedeblendingalgorithmsincrowdedareas. 7 Werecallthattoobtainabsoluteastrometricmeasurements,Gaiaprojects On the other hand, pipelines for the 2D image reconstruc- twodifferentlinesofsightonacommonfocalplane.Todisentanglesources tion from individual Gaia transits are being developed. One such comingfromthetwoprojectedlinesofsight,eachoftheSM(SkyMapper) CCDcolumnsseesonlyoneofthelinesofsight.Therefore,therewillbe somefieldsthat–evenwithlowstellarbackground–willhappentooverap 5 http://www.cosmos.esa.int/web/gaia/news20141217 crowdedareasinsomefractionoftheirtransits. 6 http://www.cosmos.esa.int/web/gaia/iow20140206 8 http://www.cosmos.esa.int/web/gaia/iow20141113 (cid:13)c 2013RAS,MNRAS000,1–16 GlobularclusterswithGaia 5 0.25 0.20 Warmer contaminant (by 2000 K) 50% contamination relative error on recovered flux 0.050.100.150.20 CSoaomleer Tceofnf tcaomntinaamn26int0315 a(0070bn%%%%yt (2ccccb0ooooo0nnnnt0tthttaaaa Kmm4mm0)iiiinnnn0aaaa0nnnn Ktttt) relative error on recovered flux 0.050.100.15 200% contamination 0.00 0.00 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 distance('') distance ('') Figure6.Thesimulatedpre-launchRVSdeblendingerrors,fordifferent Figure 5. The simulated BP deblending errors as a function of distance contaminationlevels,andoursimplifiedexponentialfits.Theshadedarea (circles),basedonaG=15magstarwithTeff=4000K,andourderivederror (D<0.17”)isnotyettreatedinthecurrentRVSdeblendingpipelines,and models(curves).Thedottedverticallinesmarktheapplicabilityrange,from our fits there are extremely uncertain, therefore we will not provide any theGaiaPSFsize(0.177”)tohalfthelengthoftheBP/RPwindows(1.76”). simulationforclassicblendsinRVS. Blendswithdifferentcharacteristicsareshown:coolerby2000K(small circlesandsolidcurves),withthesametemperature(mediumcirclesand dashedcurves),andhotterby2000K(largecirclesanddottedcurves).The onthefollowinganalysis.Iftherelativelysmallnumberofclassic coloursrefertotherelativecontaminatingflux:17%(blue),50%(green), blendscomesasasurprise,ithastobenotedthatGaiaobservations 200%(yellow),and630%(red). onlyreachV(cid:39)21maginGCs,andthustheactualcrowdinglevels aremuchlowerthanthoseofthetypicallydeeperphotometryfrom thegroundorwithHST. likethecontaminatingflux,contaminatingcolour,anddistanceof Wewillalsoassumethattheactualdeblendingerrorsfollow thecontaminatingobject(s). therelationadoptedfortheBPandRPblends(seebelow),extrap- Later,inSection4wewilltransformourfluxerrorsintoer- olating the present simulations towards smaller source distances. rorsonotherparameterslikepositions,parallaxes,propermotions, While highly uncertain, this is our only available estimate of the and radial velocities. We will then use these errors to worsen the Gaia deblending capabilities at the present stage. For RVS there nominalGaiapost-launchscienceperformances,dependingonthe crowdinglevelsufferedfromeachofoursimulatedGCstars. currentlyarenoplanstoattemptdeblendingofsourcescloserthan 0.17”, and therefore we will not attempt to simulate the effect of crowdingintheseRVSsources. 3.1 ‘Classic’blends Weterminthispaperclassicblendsthosestarsthatarecloserthan 3.2 ‘Gaia’blends the AF Gaia PSF (0.177”, see Table 1), and that will remain so As discussed in Section 2.1.2, Gaia blends are all those cases in alongthefiveyearsofGaiaobservations.Starsthatwillmoveapart whichtwostarsarecloserthanhalftheACwindowsizeoftherel- thankstotheirparallaxorpropermotiondifferences,orthathave evantinstrument(Table1,theseallfallintocase(a)ofFigure3). radialvelocitydifferencesthatallowtodeblendthem,willnotbe BecausetheAFimagedeblendingwillbesimpler(theALprofile consideredasclassicblends,buttreatedasnormalGaiablends(see issharper)thanthatofBP,RP,andRVSspectra,wewillconserva- below). tivelybaseourestimateofcrowdingerrorsfordeblendingonaset The precession of Gaia has an important implication for ofBPandRVSsimulations. crowding treatment: each time Gaia scans a particular region of FortheBPandRPblendingsimulations,weusedaper-transit, the sky, it is oriented differently, and thus the projected distance partially informed deblending pipeline10 on the GIBIS (Gaia In- oftwostarsintheSMcolumns,onwhichtheon-boardobjectde- strument and Basic Image Simulator, Babusiaux 2005) simulated tuerceti3o)n. aTnhderwefionrdeo,wasadsseisgcnrmibeendtianreSebcatsioedn,2a.r1e.1d,iffeveerenntth(eseceloFsiegs-t BGP=1s5pemcatrga.Tohfeasttayrpwicaasl bGleCndreeddwgiitahnot,thwerithsimTielffa=r4st0a0r0s,hKavainndg ctolassismicublaletendrseahlaisvteicaacllhyanthceeetorrboersdceabulesneddebdy,adltehboluengdhiintgiswdhiffiencuslot eitherTeff=4000or6000K,G=15.75or17.00mag,andatdifferent distancesequalto0.25,0.5,and1.0(cid:48)(cid:48)(seeFigure5). manyobservablesenteriterativelythedeblendingprocedurealong We then modeled the deblending (relative) errors on the re- thewholemission. coveredfluxasanexponentialαeβD,whereDisthedistancebe- Inthispaper,wewillassumethatallblendsofstarscloserthan tweenthetwoblendedstars.Thecoefficientsαandβvarywiththe theGaiaPSFwillberecognizedassuch,thankstothemissionlong lifetime,itstinyastrometricandphotometricerrors,andsophisti- cateddataanalysismethods.Becauseofthelimitednumberofclas- 10 ForadetaileddescriptionofthevariousBP/RPdeblendingpipelines, sicblends9,thisassumptionisnotgoingtohaveasignificantimpact seeSection2.1.2.Whatwemeanhereby‘partiallyinformed’isthatwe usedinformationontheblendedstarspositionsinAF,butwedidnotuse any other information, such as astrophysical parameters (Teff, logg, AV, 9 From5to8%ofthetotalnumberofstarsinoursimulations,including [Fe/H]) and therefore we assumed we did not know the spectral energy fieldstars,areclassicblends,dependingontheparticularcluster.Theclas- distributionoftheinvolvedsources.Thisisstillapessimisticassumption, sicblendsaremostlyintheinnerpartsofGCs,within1’approximately. becausetowardstheendofthemissionthiskindofinformationwillbecome FormoredetailsseeSection4.4. availableanditerativelyimprovedwitheverydataprocessingcycle. (cid:13)c 2013RAS,MNRAS000,1–16 6 Pancinoetal. temperaturedifferenceandtherelativecontaminatingflux,respec- tively,asillustratedinFigure5.ForRP,thedeblendingerrorswere arbitrarilymultipliedby1.5,owingtothegenerallywiderALshape ofthespectra,thatproducesworsedeblendingresultsthaninBP. These simplified recipes are intentionally pessimistic, to accom- modateforunexpectedsourcesoferror.Theapproximaterangeof validityofthemodel(highlightedinFigure5)goesfromtheGaia PSFsizetohalftheALsizeoftheBPandRPwindows.Asdis- cussedintheprevioussection,weappliedanextrapolationofthis relationtoD<0.17”toclassicblends,forlackofamoredetailed studyatthisstage. ForRVS,theonlyavailabledeblendingsimulationswerecom- putedbeforelaunch(AllendePrieto2008,seealsoFigure6),when the windowing scheme and backgound treatment were different (see Section 2.1.3). Thus, the error modeling presented here will bemuchmoreuncertainforRVSthanforBPandRP,orforAF. Thetemperatureorcolourdifferencebetweentwosourceshaslit- tleimpactonthedeblendingabilityoftheRVSpipelines,because the spectral shape is approximately flat along the RVS windows. Whatmostlycountsistherelativecontaminatingflux.Asaresult, the best-fitting exponential laws had a constant β, and α varying withtherelativecontaminatingflux.Asmentionedabove,wedid notextendthemodelbelowthePSFsizeforRVS(shadedregionin Figure7.Thelogarithmicdensityprofiles(leftpanels)andradialvelocity Figure6). dispersionprofiles(rightpanels)forthetwosyntheticclusterswithcon- centration parameter c=1.0 (top panels) and c=2.5 (bottom panels). The redlinesarethecorrespondingtheoreticaldensityprofiles(leftpanels)and 3.3 Contaminants ±3σcontoursaboutthesystemicvelocityforKing(1966)modelswiththe sameparameters. Forcontaminatedstars(cases(b)and(c)inFigure3),therecon- struction of star fluxes at distances larger than the window size is subject to a variety of uncertainty sources, and the relevant For RVS, the discrete background pipelines are being pipelines will be effective only when a sufficient history is accu- presentlyintegratedandtested,sonosimulationsareavailableat mulatedtobuildascene.Notonlythestarspositionsareneeded, the moment and we just extended our simplified treatment of the but also their spectral energy distributions. Additionally, a com- RVS blends (previous section) to RVS contaminants, as done for pletecharacterizationofthePSFprofilesACandAL,atdifferent BPandRP,usingtheappropriatewindowsizes. wavelengths and positions on the focal plane will be fundamen- tal.Thereforenodetailedsimulationsareavailableatthemoment (Section2.1.2). 4 CLUSTERSIMULATIONS However,wedoknowthatastep-likebehaviourisexpectedin theerrorsat1.76(cid:48)(cid:48),wheretheprocessingswitchesfromdecontam- Wesimulated18differentglobularclusters,assummarizedinTa- inationtodeblending,inthesensethatdecontaminationpipelines ble2,withdifferentconcentration,backgroundcontamination,and performslightlyworsethanthedeblendingones.Therewillbe,on distance.Thefinalsimulatedclusters,aftertheGaiascienceperfor- purpose,a‘greyarea’inprojecteddistancebetweensources,where mancesandthecrowdingerrorsimulationsareincluded,arepre- bothpipelineswillbeapplied,forcross-validationpurposes.Some sentedinTable3. testswereperformedtodevelopthecurrentdecontaminationalgo- rithms(Piersimonietal.2011,,andDeLuise,privatecommunica- 4.1 3Dsimulatedclusters tion).Accordingtothosetests,wedecidedtoroughlyapproximate the decontamination errors with a factor of 2 worsening with re- The simulated clusters were computed with the McLuster code12 specttodeblendingerrors.Thisisapessimisticassumption. (Ku¨pperetal.2011),thatisdesignedtoproduceinitialconditions Ourmodelingofdecontaminationresidualerrorsisappliedto for N-body simulations. We used the code version (mcluster sse) contaminantstarswithdistancesrangingfromhalftheACwindow whichimplementsthestellarevolutionrecipesbyHurley,Pols,& sizetothefullALwindowsizeortothecontaminatingstar’s‘size’, Tout(2000). whichever is larger. We modeled the contaminating stars sizes as Weproducedtwoclusterscontaining800000stars,withpo- a linear function of G magnitude (L. Pulone and P. M. Marrese, sitions and velocities drawn from equilibrium King (1966) mod- 2008,privatecommunication,seealsoFigure2).Starsfainterthan els.Thetwoclustersdifferedonlyintheirconcentrationparameter, G(cid:39)15magaregenerallysmallerthantheBPandRPALwindow c=log(r/r ),onehavingc=1.0andtheotherc=2.5.Amongthekey t c size11. inputparametersforthesimulation,thehalf-massradiuswascho- sentoproducea(projected)half-lightfinalradiussimilartowhat typicallyobservedforGalacticglobularclusters:4pcforthec=1.0 11 Withourlinearrelation,aG=2magstarwouldbeabletosignificantly clusterand3pcforc=2.5one(seealsoHarris1996,andfollowing contaminatestarsupto34.4(cid:48)(cid:48).Thesebrightstarsarerare:inoureighteen simulatedGCsthereisonlyonefieldstarbrighterthanthat,appearingin thesixdiskGCs. 12 http://www.astro.uni-bonn.de/∼akuepper/mcluster/mcluster.html (cid:13)c 2013RAS,MNRAS000,1–16 GlobularclusterswithGaia 7 Table2.Simulatedclusterspropertiesandcrowdingevaluationresults.Foreeachofthe18simulatedGCswelist(seetextformoredetails):(1)theGC IDnumber;(2)theGCconcentrationparameter,c=log(rt/rc);(3)theGCprojecteddistance;(4)thetypeofsimulatedbackground;(5)thetotalnumberof simulatedstars(GCandbackground)aboveGaiadetectionlimit;(6)thenumberofGCmembers;(7)thenumberofclassicblends;(8)thenumberofGaia blends;(9)thenumberofcontaminatedstars;(10)thenumberofcleanstars,i.e.,contaminatedbylessthan0.1%influx(roughly1mmag);(11)thequickGC designationusedinthepaper;and(12)someexamplesofGCswithsimilardistance,concentration,andbackgroundfieldcontamination. Cluster c distance background ntot nGC nclassic nblends ncontam nclean Designation Similarto (dex) (kpc) #1 1.0 5 halo 73385 72510 4621 45101 52142 16093 Easycase M13,M92 #2 1.0 10 halo 30200 29325 3521 21550 23754 4275 M92 #3 1.0 15 halo 14027 13152 2203 10312 11203 1495 NGC5053 #4 1.0 5 disk 54923 26816 1028 14115 17289 7379 M71 #5 1.0 10 disk 33435 5328 326 3302 3812 1164 Intermediatecase M56,NGC2298 #6 1.0 15 disk 29737 1630 123 1048 1208 311 M79 #7 1.0 5 bulge 1537592 71996 9833 69887 71600 218 M22,NGC6553 #8 1.0 10 bulge 1494601 29005 5620 28497 28919 36 M9,NGC6638 #9 1.0 15 bulge 1478538 12942 2998 12762 12911 15 Pal11 #10 2.5 5 halo 73385 72510 11902 47043 53029 15623 M5 #11 2.5 10 halo 30200 29325 6914 21977 23944 4117 M3 #12 2.5 15 halo 14027 13152 3663 10407 11176 1525 NGC5466 #13 2.5 5 disk 54923 26816 3236 15372 18085 6946 M92,Pal10 #14 2.5 10 disk 33435 5328 906 3491 3968 1055 M79,NGC1851 #15 2.5 15 disk 29737 1630 292 1097 1250 300 M15 #16 2.5 5 bulge 1537592 71996 16564 70125 71648 190 NGC6540,NGC6558 #17 2.5 10 bulge 1494601 29005 8726 28556 28924 40 NGC6325,NGC6342 #18 2.5 15 bulge 1478538 12942 4378 12770 12914 13 Difficultcase M54,NGC6517 updates). Among the key input stellar population parameters, we wellwiththepredictionsbyKing(1966),wherethetotalmassis adoptedanageof12Gyr,ametallicityofZ=0.0003,correspond- obtainedbysummingthemassesofallindividualstars. ingto[Fe/H]=–1.79dex,andaKroupa(2001)IMF(InitialMass Function).Thesimulationswereperformedwithoutincludingbi- naries, for simplicity, and the resulting clusters are spherical and 4.2 Simulatedfieldcontamination non-rotating. WesimulatedthefieldGalacticpopulationinthreedirectionsusing Themainimplicationsofourchoicesofinputparametersare: theBesanco¸nmodels14(Robinetal.2003,andreferencestherein), (i)ablueHB(HorizontalBranch)morphology,whichmaybeuse- includingkinematicsandwithoutobservationalerrors.Themodels fultotesttheperformanceofGaiaonrelativelyhotstars,and(ii) produced catalogues of magnitudes (in the Johnson-Cousins sys- astellarM/L ratiolarger((cid:62)3insteadof(cid:54)2)thanwhattypically V tem), 3D positions, and 3D motions. We adopted the “standard” observed in Galactic globular clusters having a present day mass extinctionlawofferedbytheBesanco¸nsimulator,ameananddif- function compatible with a low-exponent power law (Paust et al. fusedabsorptionof0.7mag/kpc,neglectingsmallscalevariations, 2010). The high M/L ratio is also due to a relatively large frac- V anddecreasingawayfromtheGalacticplanewithasmoothEinasto tionofdarkremnants:(cid:39)25%oftheclustermassiscontributedby profile (for more details, see Robin et al. 2003). We selected all objectswithM>M(cid:12)13.Independentlyoftherecipesgivingraiseto availablespectraltypesinamagnituderangeof0<V<25mag.The suchalargefractionofdarkremnantsandtheiractualnature,this simulationswerecomputedina0.7×0.7degsquarecentredoneach isnotaconcernforourpurpose:theonlyeffectisthatthepotential ofthefollowingthreedirections(seealsoTable2): well may be slightly deeper than for most real clusters and, con- sequently, the velocity dispersion is slightly larger, at fixed total • aratherempty“halo”fieldatl=150andb=80deg,containing luminosityandscaleradius.Whatisrelevantforusisthatthecen- (cid:39)2300starsintotal;thisismeanttorepresentthebestcasesoflow tralvelocitydispersionisstillintherightrangeandthatthemodel backgroundcontaminationinGaiaobservations; isself-consistent. • anextremelydense“bulge”fieldatl=5andb=5deg,contain- Theresultingsimulatedclustershaveabsoluteintegratedmag- ing almost 6 millions of stars, which should cover even the most nitudesofMV=–7.6mag,i.e.,justabovethepeakoftheclusters crowdedGaiaobservations,whentworelativelycrowdedlinesof luminosityfunction(MV=–7.4mag,accordingtoBrodie&Strader sightoverlaponthefocalplane(seealsoSection2); 2006).Theclustersprojectedsurfacedensitydistributionsarewell • a crowded “disk” field in the anticenter direction, at l=180 fittedbyaKing(1966)profile,whenobtainingrc(thecoreradius) and b=0, containing roughly 140000 stars, with a relatively high fromthefit.Finally,thederivedcentralvelocitydispersionsagree extinction of up to (cid:39)2 mags in V band (even if these values are only reached in (cid:39)25% of the known GCs in Harris 1996); while not as extreme as the bulge line of sight, this direction provides 13 Darkremnantsarewhitedwarfstars,neutronstars,andblackholes.Re- cently,comparablefractionsofdarkremnantswereobtainedwithstate-of- the-artclustermodelingbySollimaetal.(2015)andSollimaetal.(2016). 14 http://model.obs-besancon.fr/js (cid:13)c 2013RAS,MNRAS000,1–16 8 Pancinoetal. Table3.Column-by-columndescriptionofthefinalsimulatedstars,that 0 1. D=5 kpc halo willonlybeavailableintheelectroniceditionofthejournal,andatCDS. 8 D=10 kpc disk s 0. D=15 kpc bulge d Content Column Units Description assicblenxvec$V2 0.40.6 cc==12..05 cl f 2 0. Cluster (1) Clusternumber 0 Star (2) StarID 0. RA(cid:48) (3) (deg) PositionalongtheRAdirection 0 Dec(cid:48) (4) (deg) PositionalongtheDecdirection 1. δcoord (5) (deg) ErroronRA(cid:48)andDec(cid:48) 0.8 xvec$V1 (cid:36)µµδµRDAec(cid:48)(cid:48) ((((9678)))) (((mmm(aaamsssayyysrrr)−−−111))) RDEParAerrcoa(cid:48)(cid:48)lrplpaorrxonopppeerrormpmeoorttimioonontion Gaiablendsxvec$V2 0.40.6 δ(cid:36) (10) (mas) Parallaxerror f 0.2 G (11) (mag) G-bandintegratedmagnitude 0 δG (12) (mag) Gmagnitudeerror 0. GBP (13) (mag) GBPintegratedmagnitude 1.0 GδGRBPP ((1154)) ((mmaagg)) GGRBPPimntaeggnriattueddemerargonritude nts 0.8 xvec$V1 a MδGeRmPbership ((1167)) (mag) TGrRuPemmaegmnbiteurdsehieprror ntaminc$V2 0.6 oe 4 Note:ThepseudocoordinatesRA(cid:48)andDec(cid:48)arejustdistancesfromthe Gaiacxv 20. centerindeg,nottrueskycoordinates.Thetruemembership,inthecaseof f 0. classicblends,relatestothebrighteststaroftheblend.Itis1forcluster 0 0. membersand0forfieldstars. 0 100 200 300 400 500 600 Distancxev ferocm$V c1enter ('') stillseverecrowdinglevels–ontheGalacticplane–coupledwith significantreddening. Figure8.ResultsofthecrowdingevaluationonsimulatedGCs.Eachpanel displaystherelativefractionofclassicblends,Gaiablends,andcontam- inants as a function of distance from the GC center. Only stars that are blendedorcontaminatedbyatleast0.01magsintotal(i.e.,(cid:39)1%oftheir 4.3 SimulatedGaiameasurements flux)areshowninthefigure.Onlyclassicblendshaveasignificanteffect ontheastrometricperformances,whileBP/RPandRVSaresignificantly Each of the two clusters (see Section 4.1) was projected at three affectedalsobyGaiablendsandcontaminants. different distances of 5, 10, and 15 kpc and combined with each of the three backgrounds, to produce the 18 clusters in Table 2. Atypicalsystemicradialvelocityof100kms−1 wasassignedto ontheconsideredinstrumentandonthetypesofblends(Section3). eachcluster(broadlycompatiblewiththevalueslistedintheHarris Weadoptedanexhaustivealgorithmforneighborssearch15. 1996,catalogue,initsmostrecentversion),whileapropermotion The relative number of each type of neighbours (classic of–5masyr−1inboththeRAandDecwasassignedtoallclusters blends, Gaia blends, contaminants) for the 18 simulated clusters (broadlycompatiblewiththevaluesmeasuredby,e.g.,Dinescuet isshowninFigure8asafunctionofdistancefromtheGCcenter. al.1999).Distanceswerealsoconvertedintoparallaxes. Ascanbeseen,theparameterthatdominatesthefractionofclassic Integrated Gaia magnitudes G, G , and G (see also Sec- blendsistheGCconcentration:corecollapsedclustershavemore BP RP tion2andFigure1)wereobtainedforeachstarusingtheformu- thantwicethenumberofclassicallyblendedstarsintheircentral laeprovidedbyJordietal.(2010,usingtheircoefficientsfromTa- partscomparedtonormalGCs.Thevastmajorityofclassicblends ble3),startingfromtheB–Vcolour.Forextinction,weadoptedthe areintheGCcentralregions,andareblendsofGCmemberswith pessimistichypothesisthattheclusterreddeningwasequaltothe otherGCmembers.Distanceandreddeninghaveacuriouseffect: correspondingbackgroundfield’shighestvalue(i.e.,asiftheclus- becauseGCsbecomefainterwithincreasingdistanceandredden- terwasentirelybehindthefieldpopulation).Whilethisassumption ing, their luminosity function crosses the detection limit of Gaia is not completely realistic, it gave us the possibility of exploring where it is less populous. As a consequence, not only the num- higherreddeningconditions,atleastforthediskprojections.This berofstarsdetectedbyGaiadecreases,butalsotheprobabilityof yieldedanA of0.062magforthehaloprojections,0.080magfor V thebulgeprojections,andof2.149magforthediskprojections. 15 Inotherwords,weloopedoverthelistof(relevant)starsandcomputed distanceswithallother(relevant)stars,oneobjectatatime.Thiswasneces- sarybecausesmarterneighboursearchespre-computeadistancematrixto 4.4 Crowdingevaluation increasecomputationspeed,andthereforetendtosaturatecomputermem- oryfordatasetscontainingmorethan105 objects(HendraGunadi2011). ForeachsimulatedstarineachGC,wecountedallneighbors(with OurbulgesimulatedGCscontainafewmillionstars,andseveraltensof fluxabove0.1%ofthestar)withinaspecifieddistance,depending millionsofrelevantpairs. (cid:13)c 2013RAS,MNRAS000,1–16 GlobularclusterswithGaia 9 blending,andsotheblendsandcontaminantfractions.Ontheother shiftonthesingleGaiameasurementcouldamoutto500–800µas, hand,theeffectoffieldcontaminantsistoincreasethefractionof depending on the spectral type and on the position along the fo- Gaiablendsandcontaminantsatalldistancesfromthecenter.Ex- cal plane. By averaging out transits and by correcting the effect tremecasesarethebulgebackgroundGCs,wherethevastmajority of spectral type with G -G , the residual end-of-mission errors BP RP ofstarsareblendedand/orcontaminatedtosomedegreeatallradii, would amount to 0.4–1.4 µas (Jordi et al. 2006)16 in most of the mostlybyfieldstars. well-behaved stars. However, for objects with non-stellar or pe- We listed in Table 2 some key quantities resulting from the culiar colours, such as a Quasar or a (multiple) stellar blend, the crowdingevaluation.Ascanbeseen,thenumberofstarsthatare residualerrorcouldbestillberoughly30µas,ascomputedfrom clean(i.e.,contaminatedbylessthan1mmag)canbesubstantial thetypicalresidualcentroidshiftdifferencebetweenaBandanM when the background is not extreme. The vast majority of Gaia star,afterchromaticitycorrection(Jordietal.2006).Wethusap- blendsandcontaminantswillbeknown,asalargefractionofthe proximated linearly17 the additional chromatic error as 0.002 µas classicblends(seeSection2.1.1).Therefore,itwillalwaysbepos- for each K of temperature difference between each blended stars sibletoselectareliablesampleofcleanstarsfromGaiadata. pair(bothclassicandGaiablends),multipliedbytherelativecon- Additionally,wereportherethatalreadyinthefirstGaiare- taminatingflux.Thetypicalresidualsfromchromaticerrorscaused lease,whichdoesnotcontainstarsintruncatedwindowsorstars bycrowdingareofafewµas,butcanbesubstantiallyhigherfor withlow-qualitymeasurements(GaiaCollaborationetal.2016b), companionsthatareverybrightorhaveaverydifferentcolour(up morethan200000starswereactuallydetectedintheωCenfield. to(cid:39)30–50µasinoursimulations). Thiscompareswellwithour#1cluster,whichisreasonablecon- ForRVerrorcomputations,thefirstconsiderationisthatev- sideringthehighermassofωCen,andgivessupporttothefigures erytime a star is contaminated by another star with a net RV dif- discussedaboveandreportedinTable2. ference above (cid:39)30 km s−1 (roughly the Gaia resolution element FWHM),thereisachanceofseparatingthetwoRVs,dependingon therelativefluxcontamination.Thepercentageoffluxcontamina- 4.5 SimulatedGaiaerrors tion(obtainedasinSection3)wasusedtodegradethesignalofthe contaminated(orblended)star.Wethusrecomputedthemagnitude TocomputetheGaiaerrors,wecombinedthepost-launchGaiasci- ofeachblendedorcontaminatedstar,takingintoaccounttheresid- enceperformances(GaiaCollaboration2016a)withourcrowding ual errors after deblending or decontamination. We similarly re- error estimates. For the magnitudes we combined the two errors computedthecolourstakingintoaccounttheresidualcolourerrors. in quadrature, because they are fully independent. For the astro- TherecomputedcoloursandmagnitudeswerefedintotheRVerror metric and spectroscopic measurements, the crowding errors are equation(GaiaCollaboration2016a),toderivetheerroronRVim- notfullyindependentfromtheGaiascienceperformances,because pliedbythemagnitudeandcolourdeblendingerrors.Thesecond they both depend on the star magnitude. Therefore we conserva- considerationisthatanartificialRVshiftofroughly30kms−1can tivelysummedtheerrorsinmodulus. alsobeobtainediftwoblendedstarsareoffset,intheALdirection, byatleast4ALpixels(or0.235”),thereforewetreatedthesestars asintheabovecase.WefinallydidnotattempttosimulateanyRV 4.5.1 Crowdingerrors measurementforstarscloserthantheGaiaPSF(i.e.,oneACpixel We used the modeling described in Section 3, which provided a or0.177”)asexplainedpreviously.Moreover,wedidnotcompute relative error on the flux of each star, caused by the various type RVsorRVerrorsforstarsfainterthanG=16mag. ofblendsandcontaminantsaffectingit.Thesemodelederrorsrep- resent well the crowding errors for G, G , and G , i.e., on the BP RP photometry. 5 RESULTS Toevaluatethecrowdingerrorsonastrometry,weconsidered two components: the error on centroiding and a chromatic shift. Weillustrateinthefollowingsectionsthetypeofdataqualitywe Forthecentroidingerrors,onlyclassicblendswereconsidered,be- expect from Gaia at the end of the mission, based on our simu- causeonlystarscloserthanthePSFareexpectedtohaveasignifi- lations.Asmentionedalready,givenalltheconservativeassump- cantimpactonthefinalcentroidmeasurementofastar.Weexpect tionsandtheuseofpreliminarydeblendingpipelines,thepresented that the PSF of a star will be perturbed by the residual flux left results have to be considered pessimistic, in the sense that the bytheclosecompanionsafterthedeblendingprocedure,andthese pipelineswillbemoresophisticatedinafewyearsfromnow. residualswilldependonthecontaminatingfluxanddistanceofthe WewillshowinallfiguresthreesimulatedGCs:aneasycase blending stars, as modeled in Section 3. We therefore computed withD=5kpc,c=1.0,andahalobackground(cluster#1,plottedin thepercentualfluxintheresidualsasanaverageofthebendedstar greeninallfigures);anintermediatecasewith10kpc,c=1.0,anda andtheblendingones,weightedondistanceandfluxoftheblend- diskbackground,witharelativelyhighreddeningforGCs(cluster ing stars. We then assumed that the percentual centroiding error #5,plottedinyellow);andadifficultcasewithD=15kpc,c=2.5, causedbyblendingwasequaltothisresidualcontaminatingflux,a and a bulge background, which is an extreme condition for Gaia pessimisticassumption.Theresultingcentroidingerrorscausedby (cluster#18,plottedinred). crowdingaretypicallyoftheorderof∼10µasyr−1(withmaximum valuesof∼100),buttheyaffectarelativelylownumberofstarsin 16 TheseestimateswerecomputedusingtheGaiafiltersystem,nowabon- eachGC(seeTable2). doned,buttherearenootherestimatesavailableoftheGaiaresidualchro- For the chromaticity correction, we know that chromatic ef- maticdisplacementintheliteratureatthemoment. fectsforGaiaarerelevant,becauseofitshighaccuracy,andthey 17 Theentityofthechromaticcorrectionerrorscausedbycrowdingissmall arecorrectedusingtheBP/RPinformation.Ifanerrorismadeon forthesimulatedGCs(afewµasorµasyr−1)comparedtotheGaiascience thatcolourdeterminationbecauseofblends,theerroristransported performances(seealsoFigure10),andthereforealinearapproximationwas intotheastrometricmeasurementsaswell.Itwasestimatedthatthe consideredadequate. (cid:13)c 2013RAS,MNRAS000,1–16 10 Pancinoetal. 6000 1:2 4000 1yr)¡01::80 mas0:6 ( 2000 ¹0:4 ± 0:2 0 0 ¡2:0 ¡1:5 ¡1:0 ¡0:5¢¹(m0asyr¡1) 0:5 1:0 1:5 2:0 12 13 14 15 16G(mag1)7 18 19 20 21 400 1:2 300 1yr)¡01::80 200 mas0:6 ( 100 ±¹0:4 0:2 0 ¡2:0 ¡1:5 ¡1:0 ¡0:5¢¹(m0asyr¡1) 0:5 1:0 1:5 2:0 0 12 13 14 15 16G(mag1)7 18 19 20 21 800 1:2 600 1yr)¡01::80 400 mas0:6 ( 200 ¹0:4 ± 0:2 0 2:0 1:5 1:0 0:5 0 0:5 1:0 1:5 2:0 0 ¡ ¡ ¡ ¡ ¢¹(masyr¡1) 12 13 14 15 16G(mag1)7 18 19 20 21 Figure9.Histogramsofdifferencesbetweenthefinalanderror-freesim- Figure 10. Final simulated proper motion errors, including the effect of ulatedpropermotionsoftheeasy(greenhistogram),intermediate(yellow crowding)fortheeasy(greenpoints),intermediate(yellowpoints),anddif- histogram),anddifficultcases(redhistogram).Onlyclustermembersare ficultcases(redpoints),asafunctionoffinalsimulatedGmagnitude.Only shown.Theresultingabsolutedisplacementsinthesystemicpropermotion clustermembersareshown. determinationisofabout1–10µasyr−1,correspondingtoerrorsof<0.1%. Wenotethattheintrinsicdispersionisoftheorderof100µasyr−1,andthe final,simulatedoneis300–600µasyr−1,whenincludingallstarsdownto G(cid:39)20.7mag. clustersarealwayseasilyseparatedfromthefieldpopulation,ex- cept in the case of the extreme bulge background. In the follow- ingsections,wewillselecttheprobablememberswithaloosecri- 5.1 Propermotions terium,i.e.,starswithin1masyr−1fromthesystemicGCmotion, andwithastrictcriterium,i.e.,within0.3masyr−1 fromthesys- Because proper motions are determined with AF, the impact of crowdingislessseverethanonBP/RPspectro-photometry,oron temicGCmotion. RVSspectra.Figure9showsthehistogramofthedifferencesbe- tweenthefinalpropermotion–includingallerrorsources–and the initial error-free simulated one, for the known cluster mem- 5.1.1 Measurementofderivedquantities bers. The median systemic proper motion can be recovered with abiasof5–10µasyr−1,i.e.,withasystematicerrorofroughly0.1– ToassessthederivedquantitiesthatwillbemeasurablefromGaia 0.2%.TheintrinsicspreadofthesimulatedGCsisoftheorderof data,weperformedabasictestontheeasycaseGC.Weexcluded 100µasyr−1,dependingontheGC.Theobservedspreadisaround all stars that were clearly unrelated to the GC with a very loose 400–500µasyr−1,ifoneincludesallthesimulatedstarsdownto proper motion selection (±3 mas yr−1) and all the classic blends. themagnitudelimit.Itisalmostentirelyexplainedwiththenomi- We then converted proper motions in the RA and Dec directions nalpost-launchperformancesappliedontopoftheintrinsicspread, intovelocities,usingtheGCdistanceandpropagatingitserror(see especiallywhenincludingfaintstars.Infact(seeSection4.5.1)the Section5.2).WethenestimatedtheRVspreadsσ andσ asa RA Dec crowdingerrorsontheaffectedstarsareintheworstcasesafew functionofdistancefromtheGCcenterwiththeirerrors.Weused 100µasyr−1 forthecentroidingdetermination,and(cid:39)30µasyr−1 themaximumlikelihoodestimationmethod(MLE)withthelike- forchromaticityerrorscausedbyGBP/RPcrowdingerrors. lihood formulation described by Pryor & Meylan (1993), Walker Concerningindividualstars,Figure10showsthebehaviourof etal.(2006)andMartinetal.(2007),whichtakesintoaccountthe thefinalsimulatederrorsasafunctionofGmagnitude.Itcanbe errorsonmeasurementsaswell.TheactualerrorsontheRVdis- usefultocomparethesesimulationswiththefirstresultsfromthe persionsineachradialbinareofabout0.4–1.4kms−1.Theresultis HSTPROMOprojectforM15(HubbleSpaceTelescopePROper displayedinFigure12,showingthatGaiawillbeabletodetermine MOtionproject,Bellinietal.2014).Theirtypicalerroraroundthe theradialprofileoftheRVdispersionofnearbyGCswitherrorsof G=15magis5–10timeshigherthantheerrorexpectedfromGaia, about1kms−1inthenearestGCs. about0.1masyr−1,butatG=21magtheyareabouthalftheGaia Moreingeneral,wecansaythat: error, at 0.5 mas yr−1. Moreover, HST proper motions can reach several magnitudes below the Gaia limit. On the other hand, the (i) PropermotionsobtainedbyGaiainGCswillallowthestudy advantageofGaia’spropermotionsisthattheycoveralargerarea of dynamical relaxation in the 5–10 closest GCs (see also Sec- aroundeachGC–actually,thewholesky–andthattheyareabso- tion5.3andFigure14).Thisisbecauseatleastafewmagnitudes lutepropermotions. below the GC turn-off point are required to adequately sample a WeshowinFigure11thetypicalvectordiagramsofallsimu- rangeofstellarmasses.Figure14clearlyshowsthatthisispossi- latedstars,includingfaintstarsandbackgroundcontaminants.The bleonlyforclustersat(cid:39)5kpcorless,becauseoftheGaiadetection (cid:13)c 2013RAS,MNRAS000,1–16