ebook img

Fy 2003 Progress Report for Advanced Combustion Engine Research аnd Development PDF

259 Pages·8.22 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fy 2003 Progress Report for Advanced Combustion Engine Research аnd Development

U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2003 Progress Report for Advanced Combustion Engine Research & Development Energy Efficiency and Renewable Energy Office of FreedomCAR and Vehicle Technologies Approved by Gurpreet Singh December 2003 Advanced Combustion Engine R&D FY 2003 Progress Report ii Advanced Combustion Engine R&D FY 2003 Progress Report CONTENTS CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii INDEX OF PRIMARY AUTHORS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 II. ADVANCED COMBUSTION REGIMES AND MODELING FOR IMPROVED EFFICIENCY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 II.A. Light-Duty Diesel Fuel Spray Research Using Advanced Photon Source, Stephen Ciatti, Argonne National Laboratory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 II.B. ANL-SNL Collaborative Research on Heavy-Duty Injector Spray Characteristics, Chris Powell, Argonne National Laboratory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 II.C. Light-Duty (Automotive) Diesel Combustion, Paul Miles, Sandia National Laboratories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 II.D. Effects of the In-Cylinder Environment on Diffusion Flame Lift-Off in a Heavy-Duty Diesel Engine, Mark Musculus, Sandia National Laboratories . . . . . . . . . . . . . . . . . . . 34 II.E. Nitrogen-Enriched Air for the Reduction of NO Emissions in Heavy-Duty Diesel x Engines, Steve McConnell, Argonne National Laboratory . . . . . . . . . . . . . . . . . . . . . . . 42 II.F. Soot in Diesel Fuel Jets: Effects of Fuel Type, Wall Impingement and Low Flame Temperature, Lyle Pickett, Sandia National Laboratories . . . . . . . . . . . . . . . . . . . . . . . 46 II.G. Exploring Low-NO , Low-PM Combustion Regimes, Robert Wagner, Oak Ridge x National Laboratory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 II.H. Detailed Modeling of HCCI and PCCI Combustion and Multi-Cylinder HCCI Engine Control, Salvador Aceves, Lawrence Livermore National Laboratory . . . . . . . . . . . . . . 58 II.I. The Effects of Fuel Type, Speed, and Heat Transfer on HCCI Combustion and Emissions, John Dec, Sandia National Laboratories . . . . . . . . . . . . . . . . . . . . . . . . 62 II.J. Automotive HCCI Combustion Research, Richard Steeper, Sandia National Laboratories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 II.K. HCCI Engine Optimization and Control Using Diesel Fuel, Rolf Reitz, University of Wisconsin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 II.L. HCCI Engine Optimization and Control Using Gasoline, Dennis Assanis, University of Michigan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 II.M. Diesel HCCI Development, Gerald Coleman, Caterpillar . . . . . . . . . . . . . . . . . . . . . . . 84 II.N. Chemical Kinetic Modeling of Diesel and HCCI Combustion, Charles Westbrook, Lawrence Livermore National Laboratory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 II.O. KIVA Development, David Torres, Los Alamos National Laboratory . . . . . . . . . . . . . . 91 III. ENERGY EFFICIENT EMISSION CONTROL TECHNOLOGIES . . . . . . . . . . . . . . . . 95 III.A. Measurement and Characterization of NO Adsorber Regeneration and Desulfation, x Shean Huff, Oak Ridge National Laboratory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 III.B. Dedicated Sulfur Trap For Diesel Emission Control, David King, Pacific Northwest National Laboratory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102 III.C. NO Adsorber Regeneration Phenomena in Heavy-Duty Applications (CRADA x with International Truck and Engine Corporation), Brian West, Oak Ridge National Laboratory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107 iii Advanced Combustion Engine R&D FY 2003 Progress Report CONTENTS (Continued) III. ENERGY EFFICIENT EMISSION CONTROL TECHNOLOGIES (Continued) III.D. Cross-Cut Lean Exhaust Emission Reduction Simulation (CLEERS), Stuart Daw, Oak Ridge National Laboratory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111 III.E. Advanced CIDI Emission Control System Development, Robert Hammerle, Ford Motor Company. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116 III.F. Development of Improved Selective Catalytic Reduction Catalysts, Eric Coker, Sandia National Laboratories, Ralph McGill, Oak Ridge National Laboratory, and Kevin Ott, Los Alamos National Laboratory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121 III.G. Plasma Catalysis for NO Reduction from Light-Duty Diesel Vehicles, x Chuck Peden, Pacific Northwest National Laboratory . . . . . . . . . . . . . . . . . . . . . . . . . .129 III.H. Fuel Reformation for Vehicle Emissions Aftertreatment, Rod Borup, Los Alamos National Laboratory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137 III.I. Mechanisms of Sulfur Poisoning of NO Adsorber Materials, Chuck Peden, x Pacific Northwest National Laboratory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141 III.J. Quantitative Identification of Surface Species on NO Adsorber Catalysts, x Tod Toops, Oak Ridge National Laboratory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146 III.K. Plasma-Facilitated Lean NO Catalysis for Heavy-Duty Diesel Emissions Control, x Chris Aardahl, Pacific Northwest National Laboratory. . . . . . . . . . . . . . . . . . . . . . . . . .150 III.L. Clean Diesel Engine Component Improvement Project, Ralph Slone, Noxtech . . . . . . .154 III.M. NO Sensor for Direct Injection Emission Control, David Quinn, Delphi . . . . . . . . . . .159 x III.N. Small, Inexpensive Combined NO and O Sensor, C.F. Clark, CeramPhysics . . . . . .165 x 2 III.O. Development of an Advanced Automotive NO Sensor, Larry Pederson, x Pacific Northwest National Laboratory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169 III.P. Portable Instrument for Transient Particulate Matter Measurements, Sreenath Gupta, Argonne National Laboratory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173 III.Q. High-Energy, Pulsed Laser Diagnostics for the Measurement of Diesel Particulate Matter, Pete Witze, Sandia National Laboratories . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177 III.R. Particulate Matter Sensor for Diesel Engine Soot Control, Michael Rhodes, Honeywell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .182 SECTION IV. ADVANCED ENGINE SUB-SYSTEMS R&D . . . . . . . . . . . . . . . . . . . . . . . . .187 IV.A. Heavy Truck Engine Project, Chris Nelson, Cummins . . . . . . . . . . . . . . . . . . . . . . . . . .189 IV.B. Improvement in Heavy-Duty Engine Thermal Efficiency While Meeting Mandated 2007/2010 Exhaust Gas Emissions, Brian Bolton, Detroit Diesel Corporation . . . . . . .196 IV.C. Development of Electrically Assisted Turbocharger for Diesel Engine/Vehicle Applications, S.M. Shahed, Honeywell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202 IV.D. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology, Ulrich Hopmann, Caterpillar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205 IV.E. Clean Diesel Engine Component Improvement Program: Diesel Truck Thermoelectric Generator, S. Marchetti, Hi-Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208 IV.F. Demonstration of Integrated NO and PM Emissions for Advanced CIDI Engines, x Houshun Zhang, Detroit Diesel Corporation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213 IV.G. Light Truck Clean Diesel Engine Progress Report, John Stang, Cummins . . . . . . . . . . .217 iv Advanced Combustion Engine R&D FY 2003 Progress Report CONTENTS (Continued) IV. ADVANCED ENGINE SUB-SYSTEMS R&D (Continued) IV.H. Variable Compression Ratio Engine Analysis, Charles Mendler, Envera . . . . . . . . . . .221 IV.I. Development of Metal Substrate for DeNO Catalysts and Particulate Trap, x Craig Habeger, Caterpillar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .224 IV.J. Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction, Wayne Eckerle, Cummins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227 IV.K. Exhaust Aftertreatment and Low-Pressure Loop EGR Applied to an Off-Highway Engine, Kirby Baumgard, John Deere . . . . . . . . . . . . . . . . . . . . . . . . . . .231 IV.L. Advanced Fuel-Injection System Development to Meet EPA Emissions Standards for Locomotive Diesel Engines, Ramesh Poola, General Motors . . . . . . . . . . . . . . . . . .235 IV.M. 21st Century Locomotive Technology: Advanced Fuel Injection and Turbomachinery, Bahram Keramati, General Electric . . . . . . . . . . . . . . . . . . . . . . . . . .241 ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .247 v Advanced Combustion Engine R&D FY 2003 Progress Report vi Advanced Combustion Engine R&D FY 2003 Progress Report INDEX OF PRIMARY CONTACTS A N Aardahl, Chris . . . . . . . . . . . . . . . . . . . . . . . .150 Nelson, Chris . . . . . . . . . . . . . . . . . . . . . . . .189 Aceves, Salvador . . . . . . . . . . . . . . . . . . . . . 58 O Assanis, Dennis . . . . . . . . . . . . . . . . . . . . . . . 78 Ott, Kevin C. . . . . . . . . . . . . . . . . . . . . . . . . .121 B P Baumgard, Kirby J. . . . . . . . . . . . . . . . . . . . .231 Peden, Chuck . . . . . . . . . . . . . . . . . . . .129, 141 Bolton, Brian . . . . . . . . . . . . . . . . . . . . . . . . .196 Pederson, L. R. . . . . . . . . . . . . . . . . . . . . . . .169 Borup, Rod . . . . . . . . . . . . . . . . . . . . . . . . . .137 Pickett, Lyle M. . . . . . . . . . . . . . . . . . . . . . . 46 C Poola, Ramesh . . . . . . . . . . . . . . . . . . . . . . .235 Ciatti, Stephen . . . . . . . . . . . . . . . . . . . . . . . . 21 Powell, Christopher F. . . . . . . . . . . . . . . . . . 24 Clark, C. F. . . . . . . . . . . . . . . . . . . . . . . . . . .165 Q Coker, Eric N. . . . . . . . . . . . . . . . . . . . . . . . .121 Quinn, David B. . . . . . . . . . . . . . . . . . . . . . .159 Coleman, Gerald N. . . . . . . . . . . . . . . . . . . . 84 R D Reitz, Rolf D. . . . . . . . . . . . . . . . . . . . . . . . . 72 Daw, Stuart . . . . . . . . . . . . . . . . . . . . . . . . . .111 Rhodes, Michael . . . . . . . . . . . . . . . . . . . . . .182 Dec, John E. . . . . . . . . . . . . . . . . . . . . . . . . . 62 S E Shahed, S. M. . . . . . . . . . . . . . . . . . . . . . . . .202 Eckerle, Wayne . . . . . . . . . . . . . . . . . . . . . . .227 Slone, Ralph . . . . . . . . . . . . . . . . . . . . . . . . .154 G Stang, John . . . . . . . . . . . . . . . . . . . . . . . . . .217 Gupta, Sreenath . . . . . . . . . . . . . . . . . . . . . . .173 Steeper, Richard . . . . . . . . . . . . . . . . . . . . . . 68 H T Habeger, Craig F. . . . . . . . . . . . . . . . . . . . . .224 Toops, Todd J. . . . . . . . . . . . . . . . . . . . . . . .146 Hammerle, Robert . . . . . . . . . . . . . . . . . . . . .116 Torres, David J. . . . . . . . . . . . . . . . . . . . . . . . 91 Hopmann, Ulrich . . . . . . . . . . . . . . . . . . . . .205 W Huff, Shean . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Wagner, Robert M. . . . . . . . . . . . . . . . . . . . . 53 K West, Brian H. . . . . . . . . . . . . . . . . . . . . . . .107 Keramati, Bahram . . . . . . . . . . . . . . . . . . . . .241 Westbrook, Charles K. . . . . . . . . . . . . . . . . . 87 King, David L. . . . . . . . . . . . . . . . . . . . . . . .102 Witze, Peter . . . . . . . . . . . . . . . . . . . . . . . . . .177 M Z Marchetti, S. . . . . . . . . . . . . . . . . . . . . . . . . .208 Zhang, Houshun . . . . . . . . . . . . . . . . . . . . . .213 McConnell, Steve . . . . . . . . . . . . . . . . . . . . . 42 McGill, Ralph N. . . . . . . . . . . . . . . . . . . . . .121 Mendler, Charles . . . . . . . . . . . . . . . . . . . . . .221 Miles, Paul . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Musculus, Mark P. B. . . . . . . . . . . . . . . . . . . 34 vii Advanced Combustion Engine R&D FY 2003 Progress Report viii Advanced Combustion Engine R&D FY 2003 Progress Report I. INTRODUCTION Developing Advanced Combustion Engine Technologies On behalf of the Department of Energy’s Office of FreedomCAR and Vehicle Technologies, we are pleased to present the Fiscal Year (FY) 2003 Annual Progress Report for the Advanced Combustion Engine R&D Sub-Program. The mission of the FreedomCAR and Vehicle Technologies Program is to develop more energy efficient and environmentally friendly highway transportation technologies that enable America to use less petroleum. The Advanced Combustion Engine R&D Sub-Program supports this mission by removing the critical technical barriers to commercialization of advanced internal combustion engines for light-, medium-, and heavy-duty highway vehicles that improve the brake thermal efficiency of internal combustion engines by (cid:127) 30 to 45 percent for light-duty applications by 2010 (cid:127) 40 to 55 percent for heavy-duty applications by 2012 while meeting future Federal and state emissions regulations as well as cost and durability requirements. R&D activities include work on combustion technologies that improve efficiency, minimize in-cylinder formation of emissions, and reduce the energy penalty of aftertreatment technologies that further reduce exhaust emissions. This introduction serves to outline the nature, current progress, and future directions of the Advanced Combustion Engine R&D Sub-Program. The research activities of this Sub-Program are planned in conjunction with the FreedomCAR and the 21st Century Truck Partnerships and are carried out in collaboration with industry, national laboratories, other government agencies, and universities. Because of the importance of clean fuels in achieving low emissions, R&D activities will be closely coordinated with the relevant activities of the Fuels Technologies Sub-Program, also within the Office of FreedomCAR and Vehicle Technologies. Research is also being undertaken on hydrogen-fueled internal combustion engines, which will provide an interim hydrogen-based powertrain technology that promotes the longer range FreedomCAR Partnership goal of transitioning to a hydrogen-fueled transportation system. Hydrogen engine technologies being researched have the potential to provide diesel-like engine efficiencies with near-zero emissions. Technology Status The compression ignition, direct injection (CIDI) engine, an advanced version of the commonly known diesel engine, is the most promising advanced combustion engine technology for achieving dramatic energy efficiency improvements in light-duty vehicle applications, where it is suited to both conventional and hybrid-electric powertrain configurations. The CIDI engine is already the primary engine for heavy-duty vehicles because of its high efficiency and outstanding durability. However, implementation of the U.S. Environmental Protection Agency’s (EPA’s) Tier 2 regulations for light-duty vehicles taking effect in 2004 is imposing a significant barrier to further penetration of CIDI engines in U.S. light-duty vehicles beyond pick-up trucks and vans, unlike Europe where it represents approximately 45 percent of all new light-duty passenger car sales. Similarly, the implementation of heavy-duty engine emission standards for 2007 are predicted to cause a reduction in fuel efficiency due to the exhaust emission control devices needed in order to meet both the oxides of nitrogen (NO ) and particulate matter (PM) emissions regulations. x The technology for controlling PM from CIDI engines is highly effective and is entering commercial markets in applications (mostly heavy-duty) where duty cycles and engine strategies can create adequately high exhaust temperature to ensure regeneration, and where low-sulfur fuel is available. Regeneration 1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.