FRACTALS AND MULTIFRACTALS ECOLOGY IN AND AQUATIC SCIENCE 2782.indb 1 9/11/09 12:02:25 PM 2782.indb 2 9/11/09 12:02:25 PM FRACTALS AND MULTIFRACTALS ECOLOGY IN AND AQUATIC SCIENCE LAURENT SEURONT 2782.indb 3 9/11/09 12:02:25 PM CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2010 by Taylor and Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number: 978-0-8493-2782-7 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid- ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti- lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy- ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http:// www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging-in-Publication Data Seuront, Laurent. Fractals and multifractals in ecology and aquatic science / author, Laurent Seuront. p. cm. “A CRC title.” Includes bibliographical references and index. ISBN 978-0-8493-2782-7 (hardcover : alk. paper) . Biomathematics. 2. Mathematics in nature. 3. Ecology--Mathematics. 4. Aquatic sciences--Mathematics. 5. Fractals. 6. Multifractals. I. Title. QH323.5.S458 2010 570.15’1--dc22 2009025699 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com 2782.indb 4 9/11/09 12:02:26 PM Dedication To my sweetheart, for the past, present, and future. 2782.indb 5 9/11/09 12:02:26 PM 2782.indb 6 9/11/09 12:02:26 PM Contents Preface ...........................................................................................................................................xiii About the Author............................................................................................................................xv 1 Introduction ...............................................................................................................................1 2 About Geometries and Dimensions .......................................................................................11 2.1. From Euclidean to Fractal Geometry ...................................................................................1.1. 2.2 Dimensions ............................................................................................................................1.6 2.2.1. Euclidean, Topological, and Embedding Dimensions .............................................1.6 2.2.1..1. Euclidean Dimension .............................................................................1.6 2.2.1..2 Topological Dimension ..........................................................................1.6 2.2.1..3. Embedding Dimension ..........................................................................1.7 2.2.2 Fractal Dimension ...................................................................................................1.8 2.2.2.1. Fractal Codimension ..............................................................................22 2.2.2.2 Sampling Dimension ..............................................................................23. 3 Self-Similar Fractals ..............................................................................................................25 3..1. Self-Similarity, Power Laws, and the Fractal Dimension .....................................................25 3..2 Methods for Self-Similar Fractals .........................................................................................28 3..2.1. Divider Dimension, D ............................................................................................29 d 3..2.1..1. Theory ....................................................................................................29 3..2.1..2 Case Study: Movement Patterns of the Ocean Sunfish, Mola Mola ......3.2 3..2.1..3. Methodological Considerations .............................................................3.5 3..2.2 Box Dimension, D ..................................................................................................46 b 3..2.2.1. Theory ....................................................................................................46 3..2.2.2 Case Study: Burrow Morphology of the Grapsid Crab, Helograpsus Haswellianus ....................................................................47 3..2.2.3. Methodological Considerations .............................................................51. 3..2.2.4 Theoretical Considerations ....................................................................52 3..2.3. Cluster Dimension, D .............................................................................................56 c 3..2.3..1. Theory ....................................................................................................56 3..2.3..2 Case Study: The Microscale Distribution of the Amphipod Corophium Arenarium ...........................................................................57 3..2.3..3. Methodological Considerations: Constant Numbers or Constant Radius? ...................................................................................................59 3..2.4 Mass Dimension, D ...............................................................................................60 m 3..2.4.1. Theory ....................................................................................................60 3..2.4.2 Case Study: Microscale Distribution of Microphytobenthos Biomass .....61. 3..2.4.3. Comparing the Mass Dimension D to Other Fractal Dimensions .......65 m 3..2.5 Information Dimension, D .......................................................................................66 i 3..2.5.1. Theory ....................................................................................................66 3..2.5.2 Comparing the Information Dimension D i to Other Fractal Dimensions ..................................................................67 vii 2782.indb 7 9/11/09 12:02:27 PM viii Contents 3..2.6 Correlation Dimension, D ..................................................................................68 cor 3..2.6.1. Theory ....................................................................................................68 3..2.6.2 Comparing the Correlation Dimension D to Other Fractal cor Dimensions ............................................................................................69 3..2.7 Area-Perimeter Dimensions ....................................................................................69 3..2.7.1. Perimeter Dimension, D .......................................................................70 p 3..2.7.2 Area Dimension, D ...............................................................................72 a 3..2.7.3. Landscape/Seascape Dimension, D ......................................................72 s 3..2.7.4 Fractal Dimensions, Areas, and Perimeters...........................................73. 3..2.8 Ramification Dimension, D ....................................................................................87 r 3..2.8.1. Theory ....................................................................................................87 3..2.8.2 Fractal Nature of Growth Patterns.........................................................87 3..2.9 Surface Dimensions .................................................................................................92 3..2.9.1. Transect Dimension, D ........................................................................93. t 3..2.9.2 Contour Dimension, D .......................................................................94 co 3..2.9.3. Geostatistical Dimension, D .................................................................95 g 3..2.9.4 Elevation Dimension, D ........................................................................96 e 4 Self-Affine Fractals .................................................................................................................99 4.1. Several Steps toward Self-Affinity ........................................................................................99 4.1..1. Definitions ...............................................................................................................99 4.1..2 Fractional Brownian Motion ...................................................................................99 4.1..3. Dimension of Self-Affine Fractals .........................................................................1.00 4.1..4 1./f Noise, Self-Affinity, and Fractal Dimensions ..................................................1.02 4.1..5 Fractional Brownian Motion, Fractional Gaussian Noise, and Fractal Analysis .....................................................................................................1.03. 4.2 Methods for Self-Affine Fractals ........................................................................................1.06 4.2.1. Power Spectrum Analysis ......................................................................................1.06 4.2.1..1. Theory ..................................................................................................1.06 4.2.1..2 Spectral Analysis in Aquatic Sciences ................................................1.08 4.2.1..3. Case Study: Eulerian and Lagrangian Scalar Fluctuations in Turbulent Flows ...................................................................................1.09 4.2.2 Detrended Fluctuation Analysis ............................................................................1.1.7 4.2.2.1. Theory ..................................................................................................1.1.7 4.2.2.2 Case Study: Assessing Stress in Interacting Bird Species ...................1.1.9 4.2.3. Scaled Windowed Variance Analysis ....................................................................1.24 4.2.3..1. Theory ..................................................................................................1.24 4.2.3..2 Case Study: Temporal Distribution of the Calanoid Copepod, Temora Longicornis .............................................................................1.25 4.2.4 Signal Summation Conversion Method .................................................................1.28 4.2.5 Dispersion Analysis ...............................................................................................1.28 4.2.6 Rescaled Range Analysis and the Hurst Dimension, D ......................................1.28 H 4.2.6.1. Theory ..................................................................................................1.28 4.2.6.2 Example: R/S Analysis and River Flushing Rates...............................1.3.1. 4.2.7 Autocorrelation Analysis .......................................................................................1.3.1. 4.2.8 Semivariogram Analysis .......................................................................................1.3.3. 4.2.8.1. Theory ..................................................................................................1.3.3. 4.2.8.2 Case Study: Vertical Distribution of Phytoplankton in Tidally Mixed Coastal Waters ..........................................................................1.3.4 4.2.9 Wavelet Analysis ...................................................................................................1.3.9 2782.indb 8 9/11/09 12:02:29 PM Contents ix 4.2.1.0 Assessment of Self-Affine Methods ......................................................................1.40 4.2.1.0.1. Comparing Self-Affine Methods .........................................................1.40 4.2.1.0.2 From Self-Affinity to Intermittent Self-Affinity ..................................1.43. 5 Frequency Distribution Dimensions ...................................................................................147 5.1. Cumulative Distribution Functions and Probability Density Functions .............................1.47 5.1..1. Theory ...................................................................................................................1.47 5.1..2 Case Study: Motion Behavior of the Intertidal Gastropod, Littorina Littorea ...................................................................................................1.47 5.1..2.1. The Study Organism ............................................................................1.47 5.1..2.2 Experimental Procedures and Data Analysis ......................................1.48 5.1..2.3. Results ..................................................................................................1.49 5.1..2.4 Ecological Interpretation .....................................................................1.50 5.2 The Patch-Intensity Dimension, D ...................................................................................1.51. pi 5.3. The Korcak Dimension, D ................................................................................................1.53. K 5.4 Fragmentation and Mass-Size Dimensions, D and D ....................................................1.54 fr ms 5.5 Rank-Frequency Dimension, D ........................................................................................1.55 rf 5.5.1. Zipf’s Law, Human Communication, and the Principle of Least Effort .......................................................................................................1.55 5.5.2 Zipf’s Law, Information, and Entropy ...................................................................1.56 5.5.3. From the Zipf Law to the Generalized Zipf Law ..................................................1.58 5.5.4 Generalized Rank-Frequency Diagram for Ecologists .........................................1.60 5.5.5 Practical Applications of Rank-Frequency Diagrams for Ecologists ....................1.61. 5.5.5.1. Zipf’s Law as a Diagnostic Tool to Assess Ecosystem Complexity .............................................................1.61. 5.5.5.2 Case Study: Zipf Laws of Two-Dimensional Patterns .........................1.77 5.5.5.3. Distance between Zipf’s Laws .............................................................1.88 5.5.6 Beyond Zipf’s Law and Entropy ............................................................................1.89 5.5.6.1. n-Tuple Zipf’s Law ...............................................................................1.89 5.5.6.2 n-Gram Entropy and n-Gram Redundancy .........................................1.93. 6 Fractal-Related Concepts: Some Clarifications .................................................................201 6.1. Fractals and Deterministic Chaos .......................................................................................201. 6.1..1. Chaos Theory ........................................................................................................201. 6.1..2 Feigenbaum Universal Numbers ...........................................................................205 6.1..3. Attractors ...............................................................................................................205 6.1..3..1. Visualizing Attractors: Packard-Takens Method .................................206 6.1..3..2 Quantifying Attractors: Diagnostic Methods for Deterministic Chaos....................................................................................................209 6.1..3..3. Case Study: Plankton Distribution in Turbulent Coastal Waters .....................................................................21.3. 6.1..3..4 Chaos, Attractors, and Fractals ............................................................224 6.1..4 Chaos in Ecological Sciences ................................................................................224 6.1..5 A Few Misconceptions about Chaos .....................................................................225 6.1..6 Then, What Is Chaos?............................................................................................225 6.2 Fractals and Self-Organization ...........................................................................................226 6.3. Fractals and Self-Organized Criticality ..............................................................................226 6.3..1. Defining Self-Organized Criticality ......................................................................226 6.3..2 Self-Organized Criticality in Ecology and Aquatic Sciences ...............................229 2782.indb 9 9/11/09 12:02:30 PM
Description: