Table Of ContentFast Design and Optimisation of One-
Dimensional Microstrip Patch Antenna Arrays
by
Brandt Klopper
Thesis presented in partial fulfilment of the requirements for the degree
Master of Engineering in Electrical and Electronic Engineering at
Stellenbosch University
Supervisor: Dr. D.I.L. de Villiers
Faculty of Electrical and Electronic Engineering
March 2016
Stellenbosch University https://scholar.sun.ac.za
DECLARATION
By submitting this thesis electronically, I declare that the entirety of the work contained therein is my
own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that
reproduction and publication thereof by Stellenbosch University will not infringe any third party rights
and that I have not previously in its entirety or in part submitted it for obtaining any qualification.
Date: .March 2016
Copyright © 2016 Stellenbosch University
All rights reserved
i
Stellenbosch University https://scholar.sun.ac.za
Acknowledgements
Upon completion of this work, I would like to express my heartfelt thankfulness and appreciation for
the support and assistance from my family, friends and teachers. In particular, I give my thanks to:
My supervisor, Prof. Dirk de Villiers, whose guidance, support and expertise throughout the
course of this project has been invaluable in my academic and professional development.
Reutech Radar Systems, who made this project possible through their financial support.
My fiancé, Jen, who has given me more friendship, love, patience and stability than I could
ever have asked for. Words cannot express my gratitude.
My mother and father, whose encouragement and interest in my work has been endless, and
whose support is unfailing. Thank you for believing in me even when I did not, and for being
my first and most prominent academic role models.
My brother, Rijn, who implicitly taught me the value of substantiating claims with facts at a
young age, and who also is an all-round great brother.
My fellow students in Room E205, who gave me advice, assistance and comradeship through
everything.
My second family at TomboKai Bujutsu, who taught me resilience and patience in the long path
towards self-improvement.
My friends, who I have the privilege of being friends with, and who have remained my friends
throughout the years.
ii
Stellenbosch University https://scholar.sun.ac.za
Abstract
This thesis proposes a method for the design of one-dimensional, uniformly spaced, nonuniform
amplitude microstrip patch antenna arrays using computationally inexpensive transmission-line models
and space mapping surrogate-based optimisation. The method provides consistent and effective results
for both impedance specifications and radiation specifications, and is significantly faster than
conventional full-wave optimisation procedures.
The method is developed for microstrip-fed, probe-fed and aperture-fed rectangular microstrip
antennas. Transmission-line models of each geometry are developed and run through a set of validation
experiments to test their effectiveness over a range of substrate choices. The models are shown to
perform with reasonable accuracy for a practical set of substrates, to the point where they are useful
coarse models in space mapping optimisation procedures.
An optimisation framework is set out to apply the space mapping paradigm to the design of the three
aforementioned patch element geometries, as well as the design of a one-dimensional array. Several
types of space mapping techniques are tested on each design problem, and the most efficient is selected
to incorporate into the main design method of the thesis.
The method incorporates the design of the individual patch antenna elements, the array layout and the
finite antenna/feed substrate dimensions. The method is developed to accommodate microstrip feeds,
probe feeds and aperture-coupled feeds to the patch antenna elements.
A design procedure is developed to design a one-dimensional patch antenna array to a desired
impedance and radiation specification. The procedure is tested with 2 experimental S-band designs; a
narrowband probe-fed 1x8 patch array and a wideband aperture-fed 1x8 patch array. The aperture-
coupled patch array achieves 10% fractional bandwidth over a -10 dB |𝑆 | passband, and exhibits 13.9°
11
3dB-beamwidth and -20.6 dB sidelobe-level in its gain pattern, across its passband. The total solver
runtime of the entire aperture-coupled patch antenna array optimisation process amounts to 1708.14s
(28.47 minutes).
The design method is modular, efficient and integrated with a general space mapping optimisation
software framework. It is highly expandable and is one of few, if any works to apply a transmission-
line model to the space mapping optimisation of an aperture-coupled patch antenna.
iii
Stellenbosch University https://scholar.sun.ac.za
Opsomming
Hierdie tesis stel ʼn metode voor vir die ontwerp van eendimensionele, uniforme gespasieerde, nie-
uniform amplitude, mikrostrook plak antenna skikking met die gebruik van lae-intensiewe numeriese
transmissielyn modelle en spasie-karterings surrogaat-gebaseerde optimisasies. Die metode lewer
konsekwente en effektiewe resultate vir beide impedansie- en stralingspesifikasies. Die metode is
beduidend vinniger as konvensionele vol-golf optimisasie prosedures.
Die metode is ontwikkel vir koplanêr-gevoed, probe-gevoed en gleuf-gevoerde reghoekige mikrostrook
antennas. Transmissielyn modelle is ontwerp vir elke antenna geometrie en dié ontwerpe se
effektiwiteit word getoets deur behulp van ʼn stel validasie eksperimente oor verskeie substraat keuses.
Daar word getoon in hierdie tesis dat hierdie modelle presteer met redelike akkuraatheid oor ʼn reeks
prakties-realiseerbare substrate. Sodoende kan hierdie modelle gebruik word vir rowwe modelle in
Spasie-karterings optimisasie prosedures.
ʼn Optimasie raamwerk word opgestel om die spasie-karterings paradigma toe te pas op die ontwerp van
die drie bogenoemde geometrie ontwerpe, asook op ʼn eendimensionele skikking van antennas.
Verskeie tipes Spasie-karterings tegnieke word getoets op elke ontwerpsprobleem, en die mees
effektiefste tegniek word dan geïnkorporeer in die hoof ontwerp metode van die tesis.
Hierdie metode inkorporeer die ontwerp van die individuele plak antenna elemente, die skikking uitleg
en die eindige antenna/voer substraat dimensies. Die metode is ontwikkel om mikrostrook, koplanêr
voere, probe-voere en gleuf-gekoppelde voere te akkommodeer na die plak antenna elemente.
ʼn Ontwerp prosedure is ontwikkel om ʼn eendimensionele plak antenna skikking te ontwerp by ʼn
gewenste impedansie en stralingsspesifikasie. Die prosedure is getoets met twee eksperimentele S-
band ontwerpe, ʼn nouband probe-gevoed 1x8 plak skikking en ʼn wyeband gleuf 1x8 plak skikking. Die
gleuf plak skikking behaal 10% fraksionele bandwydte oor ʼn -10 dB |S | deurlaatband, en stel ʼn 13.9o
11
3 dB-bundelwydte met ʼn -20.6dB sylobvlak in die aanwins patroon oor die deurlaatband ten toon. Die
totale hardlooptyd van die oplosser was 1708.14s (28.47 minute) vir die volledige gleuf plak antenna
skikking optimisasie proses.
Die ontwerpsmetode wat uitgelê is in hierdie dokument is modulêr, effektief en geïntegreer met ʼn
algemene spasie-karterings optimisasie raamwerk Dit is hoog uitbreibaar en is een van die min, indien
enige, metodes wat transmissielyn modelle gebruik vir die spasie-karterings optimisasie van ʼn
koppelvlak plak antenna.
iv
Stellenbosch University https://scholar.sun.ac.za
Table of Contents
Chapter 1 - Introduction
1.1 Problem Statement ...................................................................................................................... 1
1.2 About this Thesis ........................................................................................................................ 1
1.3 Thesis Layout .............................................................................................................................. 2
Chapter 2 - Theoretical Overview
2.1 Antenna Fundamentals ................................................................................................................ 4
2.1.1 Nearfields and Farfields ...................................................................................................... 5
2.1.2 Antenna Properties .............................................................................................................. 6
2.1.2.1 Radiation Pattern .............................................................................................................. 6
2.1.2.2 Sidelobe Level.................................................................................................................. 7
2.1.2.3 Beamwidth ....................................................................................................................... 8
2.1.2.4 Bandwidth ........................................................................................................................ 8
2.2 Microstrip Patch Antennas .......................................................................................................... 9
2.2.1 Basic Rectangular Patch .................................................................................................... 10
2.2.1.1 Basic Patch Overview .................................................................................................... 10
2.2.1.2 Transmission-line Model ............................................................................................... 13
2.2.1.3 Cavity Model.................................................................................................................. 15
2.2.1.4 Polarisation .................................................................................................................... 17
2.2.1.5 Feeding Methods ............................................................................................................ 18
2.2.3 Aperture-fed Patch ............................................................................................................ 19
2.3 Antenna Arrays ......................................................................................................................... 20
2.4 Conclusion ................................................................................................................................ 21
Chapter 3 - Full-wave EM Modelling of Patch Antenna Elements
3.1 EM Solver Systems ................................................................................................................... 22
3.1.1 FEKO MoM ...................................................................................................................... 23
3.1.3 CST MWS Solvers ............................................................................................................ 24
v
Stellenbosch University https://scholar.sun.ac.za
3.2 Modelling of Basic Patch .......................................................................................................... 24
3.2.1 FEKO MoM ...................................................................................................................... 24
3.2.2 CST MWS Frequency Domain Solver .............................................................................. 26
3.2.3 CST MWS Time Domain Solver ...................................................................................... 27
3.2.4 Convergence Study ........................................................................................................... 28
3.3 Modelling of Aperture-fed Patch .............................................................................................. 31
3.3.1 FEKO MoM ...................................................................................................................... 32
3.3.2 CST MWS Solvers ............................................................................................................ 32
3.3.4 Convergence Study ........................................................................................................... 33
3.4 Performance Summary .......................................................................................................... 36
3.4 Practical Substrate Modelling ................................................................................................... 36
3.5 Full-wave Coarse Modelling ..................................................................................................... 37
3.6 Conclusion ................................................................................................................................ 38
Chapter 4 - Transmission-line Modelling of Patch Antenna Element
4.1 Basic Edge-fed Patch TLM ....................................................................................................... 39
4.1.1 Edge Network 𝑵𝑾𝒑 – Balanis Model .............................................................................. 39
4.1.2 Edge Network 𝑵𝑾𝒑 – Jaisson Model .............................................................................. 41
4.1.3 Model Validation- TLM Experiment 1 ............................................................................. 43
4.2 Aperture-fed Patch TLM ........................................................................................................... 44
4.1.1 Aperture Admittance ......................................................................................................... 45
4.1.2 Coupling Transformer Turns Ratios ................................................................................. 47
4.1.3 Model Validation .............................................................................................................. 48
4.3 Conclusion ................................................................................................................................ 49
Chapter 5 - Optimisation Framework
5.1 Local vs. Global Optimisation .................................................................................................. 50
5.2 Space mapping .......................................................................................................................... 52
5.2.1 Space mapping Algorithm ................................................................................................ 52
5.2.2 SM Techniques ................................................................................................................. 54
5.3 Basic Patch Antenna SM........................................................................................................... 56
vi
Stellenbosch University https://scholar.sun.ac.za
5.3.1 Response and Cost Function ............................................................................................. 56
5.3.2 Input Parameters ............................................................................................................... 58
5.3.3 Choice of SM Technique .................................................................................................. 59
5.3.3.1 Full-wave Coarse Model ................................................................................................ 59
5.3.3.2 TLM Coarse Model ........................................................................................................ 61
5.3.4 Basic Patch SM Example .................................................................................................. 61
5.4 Aperture-fed Patch Antenna SM ............................................................................................... 66
5.4.1 Model Parameters ............................................................................................................. 67
5.4.1.1 Input Parameters ............................................................................................................ 67
5.4.1.2 Implicit Parameters ........................................................................................................ 67
5.4.2 Choice of SM Technique .................................................................................................. 68
5.4.3 Aperture-fed Patch SM Example ...................................................................................... 69
5.5 Linear Antenna Array SM......................................................................................................... 71
5.5.1 Response and Cost Function ............................................................................................. 71
5.5.2 Choice of SM Technique .................................................................................................. 72
5.5.4 Array SM Example ........................................................................................................... 74
5.6 Conclusion ................................................................................................................................ 78
Chapter 6 - Design and Optimisation of 1x8 Patch Antenna Arrays
6.1 Design Strategy ......................................................................................................................... 79
6.1.1 Step 1 – Design Specification ........................................................................................... 80
6.1.2 Step 2 – Design Patch Element ......................................................................................... 81
6.1.2.1 Basic Patch ..................................................................................................................... 81
6.1.2.2 Aperture-fed Patch ......................................................................................................... 82
6.1.3 Step 3 – Design 1x8 Array ................................................................................................ 84
6.1.4 Step 4 – Adjust Elements for Coupling............................................................................. 86
6.2 Design I- 2.4 GHz Probe-fed Narrowband Patch Array ........................................................... 86
6.2.1 Design Specification ......................................................................................................... 86
6.2.1 Patch Element Design ....................................................................................................... 87
6.2.2 Array Design ..................................................................................................................... 88
vii
Stellenbosch University https://scholar.sun.ac.za
6.2.4 Full-wave Simulation ........................................................................................................ 88
6.3 Design II- 2.4 GHz Aperture-fed Wideband Patch Array ......................................................... 92
6.3.1 Design Specification ......................................................................................................... 92
6.3.1 Patch Element Design ....................................................................................................... 92
6.3.2 Array Design ..................................................................................................................... 93
6.3.4 Full-wave Simulation ........................................................................................................ 94
6.5 Conclusion ................................................................................................................................ 99
Chapter 7 - Conclusion
Bibliography ....................................................................................................................................... 102
viii
Stellenbosch University https://scholar.sun.ac.za
Chapter 1
Introduction
1.1 Problem Statement
A method is sought for the efficient design of cost-effective replacements for existing, high-
specification radar antenna systems. The antenna systems are intended to be used in commercial-
specification facsimiles of existing military-specification radar systems, and thus their requirements are
less stringent, but their design and implementation are desired to be of a lower computational and
physical cost. Systems operating in the L- to X-band frequency ranges are considered pertinent to the
design problem. The solution presented in this thesis is the efficient design of a microstrip patch antenna
array system.
As with most antenna structures, the design and optimisation of microstrip antennas requires some form
of full-wave solution system. Full-wave solvers, while more accurate than circuit-based solvers, tend to
be cumbersome and incur relatively high computational cost. When optimisations that call for many
solver evaluations are considered, this cost can become almost prohibitively high. Attempts have been
made to alleviate this burden through surrogate-based optimisation and the Space mapping optimisation
paradigm [1] [2], whereby a less accurate ‘coarse’ model’s response is adjusted to act as a surrogate for
a finely-meshed full-wave ‘fine’ model. A survey of the literature shows that Space mapping procedures
applied to the design of patch antennas have thus far only considered coarsely-meshed full-wave models
for the ‘coarse’ model of the process. Even when they are coarsely-meshed, full-wave solutions are
generally still considerably more computationally expensive than solutions implemented in microwave
circuit solvers.
Thus, a need is presented both for a low-cost antenna design, as well as for a more efficient coarse
model to apply to Space mapping optimisations of patch antennas. These two needs are combined to
form the focus of this thesis.
1.2 About this Thesis
In this thesis, a method is proposed for the design of one-dimensional, uniformly spaced, nonuniform
amplitude microstrip patch antenna arrays of 2𝑁 antenna elements (𝑁 ∈ 1,2,3…). The method
incorporates the design of the individual patch antenna elements, the array layout and the finite
antenna/feed substrate dimensions. The method is developed to accommodate microstrip feeds, probe
feeds and aperture-coupled feeds to the patch antenna elements.
The development of the method is facilitated through the design of several 1x8 patch antenna arrays
with varying design specifications. Designs of below -10 dB reflection coefficient across 9-10%
1
Description:conventional full-wave optimisation procedures. The method is developed for microstrip-fed, probe-fed and aperture-fed rectangular microstrip antennas. Transmission-line models of each geometry are developed and run through a set of validation experiments to test their effectiveness over a range of