JournalofEducationalPsychology ©2014AmericanPsychologicalAssociation 2014,Vol.106,No.4,000 0022-0663/14/$12.00 http://dx.doi.org/10.1037/edu0000001 Interleaved Practice Improves Mathematics Learning Doug Rohrer, Robert F. Dedrick, and Sandra Stershic UniversityofSouthFlorida Atypicalmathematicsassignmentconsistsprimarilyofpracticeproblemsrequiringthestrategyintro- duced in the immediately preceding lesson (e.g., a dozen problems that are solved by using the Pythagoreantheorem).Thismeansthatstudentsknowwhichstrategyisneededtosolveeachproblem beforetheyreadtheproblem.Inanalternativeapproachknownasinterleavedpractice,problemsfrom thecoursearerearrangedsothataportionofeachassignmentincludesdifferentkindsofproblemsinan interleavedorder.Interleavedpracticerequiresstudentstochooseastrategyonthebasisoftheproblem y. s.adl itself,astheymustdowhentheyencounteraproblemduringacomprehensiveexaminationorsubsequent herbro course.Intheexperimentreportedhere,126seventh-gradestudentsreceivedthesamepracticeproblems publisnated oovrebryath3e-muosunathlbpleorciokde,dbauptptrhoeapchro.bTlehmesprwacetriecearprahnagseedcosnoctlhuadtesdkiwllisthwaerreevleieawrnesdesbsyioinn,teforlleloavweeddp1raocrti3c0e dmi dayslaterbyanunannouncedtest.Comparedwithblockedpractice,interleavedpracticeproducedhigher salliedisse scoresonboththeimmediateanddelayedtests(Cohen’sds(cid:2)0.42and0.79,respectively). ofitobe Keywords:learning,mathematics,interleaved,spaced,practice et onot n ors i ationand The ongoing effort to improve students’ mathematics profi- the Pythagorean theorem to solve this problem, they must first cier ciency has included a wide variety of interventions. Some are infer that they should use it. In other words, the solution to a os ssu rooted in theoretical models of cognition, some are designed to mathematics problem requires students to choose a strategy, not Aal aldu eliminatemisconceptions,andstillothersaimtoreducestudents’ only execute the strategy, and students often find the choice of ologicindivi minaspthireemdabtiycswhanatxiiestyp.erHhaeprsetwheesidmespclreisbteprainnciipnlteerovfenletiaornninthga:tthies sKtriarstecghynetro, &bevmanoreMcehrrailëlennbgoienrg, 2th0a0n4;itSsieexgelecru,ti2o0n03(e;.gS.i,eKgleesrte&r, he ycth practiceofaskillimprovestheperformanceofthatskill.Itmight Shrager, 1984). In formal terms, the choice of an appropriate Psof seem that this robust maxim is already widely used in the math- strategy requires students to both discriminate between different ne caus ematicsclassroombecausenearlyallteachersassignpracticeprob- kindsofproblems(i.e.,problemsrequiringdifferentstrategies)and merinal lems like the ones appearing on tests. However, most practice associateeachkindofproblemwithanappropriatestrategy(Fig- eAerso assignments are arranged in a way that simplifies the solution to ure1). byththep ewahcehnptrhoebyleamre, atensdtetdh.is crutch is usually not available to students supTehreficcihaolliycesiomfialanrapprporbolpermiastesosmtraetteimgyesisreoqftueinreddififfifceureltnbtesctraautsee- pyrightedsolelyfor ssotelTpuosti,osanesetiolwlnuhesytarralttyheidasnbiysymtthhaeethfceoamlsleao,twicwisnegprmporbuolsebtmlefismrsi.ntcplouidnetsotwutotdhiasttitnhcet gekxiienasdm(poelf.eg,p.,rwoCobrhldeim,pFroietbltlioesv.miFcshoo,rft&eexnaGmlalcpaklsee,er,xthp1el9ic8pi1tre;cvuSieoiseugsthlewart,oir2nd0d0ipc3rao)t.belFethomer scoded Agirlhikes8kmeastandthen15kmnorth.Howfarisshefrom requiredthePythagoreantheorem,buttheproblemdidnotinclude hisdocumentiarticleisinten hitsreia1rTn7hsgtikalsemrp,tirabnonegbdclape8umo2sien(cid:3)itst?hs1eo5luv2ne(cid:2)kdnbo1yw72nth).deHisPtoyawtnhceaevgeiosrr,tehbaeenfhothyreepoosrtteeumndues(ntehtsoefcaaannrsiwugsheert hiasntnyrspyatotremutgeceniteniuostsinoeis.n“SuIosnofelvftauhellegfe(oPebry.rgatxh.,,”afsgdatooucrtedeosearninnntosgtth,meiqnouudrsaeitcdmarsatooetilrcvwtehfhoeiecrqmwhuouoarltfadio,sthnatesnr,iddabinsfuogfetleortenhon)ert. This Similarly,muchofcalculusisdevotedtointegration,andstudents T must learn to discriminate between problems that look alike yet requiredifferentintegrationtechniques(e.g.,(cid:4)exedxand(cid:4)xexdx).In DougRohrer,DepartmentofPsychology,UniversityofSouthFlorida; short,studentsatnearlyeverylevelofmathematicsmustlearnto RobertF.Dedrick,DepartmentofEducationalandPsychologicalStudies, discriminate between different kinds of problems with similar UniversityofSouthFlorida;SandraStershic,DepartmentofPsychology, surfacefeatures. UniversityofSouthFlorida. Yet students need not learn to choose a strategy when every This work was supported by the Institute of Education Sciences, U.S. problem within a practice assignment requires the same strate- DepartmentofEducation,throughGrantR305A110517(principalinves- gy—anapproachknownasblockedpractice.Withblockedprac- tigator:DougRohrer).Theopinionsexpressedarethoseoftheauthorsand tice,studentsknowthestrategybeforetheyreadtheproblem.For donotnecessarilyrepresenttheviewsoftheU.S.DepartmentofEduca- example, if a lesson on proportions is followed by a dozen word tion.WethankHillsboroughCountyPublicSchoolsfortheirparticipation. problems requiring students to create a proportion, students need Correspondence concerning this article should be addressed to Doug Rohrer,PsychologyPCD4118G,UniversityofSouthFlorida,Tampa,FL notlearnwhichfeaturesofaproblemindicatethatitcanbesolved 33620.E-mail:[email protected] by a proportion. In short, blocked practice does not provide stu- 1 2 ROHRER,DEDRICK,ANDSTERSHIC shers.broadly. Fsptrirogabutelregemy1.s.TahnTedhcaehsossooiccleuiatiotoefneaoancfhaapkpmirnoadtphroeiafmtepartsioctbrsaletpemrgoybwlreietmhqu.aiSnretusadptephnraottspsrmtiuaudtesetnslttesraadrtenisgctyor.imcShtiunodaoteseentbsaedtswtoreaneteongtydnieaffeneddretenoxteckchiuontodessethoaef blied strategyifeverypracticeproblemwithinanassignmentrequiresthesamestrategy(blockedpractice). punat dmi salliedisse dentswithanopportunitytochooseanappropriatestrategyonthe clude problems in a variety of formats (e.g., procedural prob- ite ofob basis of the problem itself, and yet they must perform this skill lems,wordproblems,open-endedquestions,andstandardizedtest oneott when they sit for an exam consisting of multiple kinds of prob- practiceproblems),butmostofthepracticeproblemsarededicated orsn lems. to the immediately preceding lesson. In some of the textbooks, i ciationerand maBthloemckaetdicsprparcotbicleemc,apnardtrlyambaetcicaaulsleysrteudduecnetstnheeeddinffoictudlitsycroimfia- e(saocmheptirmacetsicmeoarsestihgannm1e0n0t,cpornessiusmtsabolfymsoanthyatdtoezaecnhserosfcapnrocbhloeomses sous natebetweenproblemsrequiringdifferentstrategies.Considerthis a subset of problems), and the latter portion of each assignment s chologicalAheindividual emxaaCTnmhhyiplsocloeep.orbokabieklseemdre2ims4ascoionlvo?ekdiebs.yHsiemrpfalethseurbtartaect1i0ono(f2t4he–c1o0o(cid:2)kie1s4.)H,bouwt ipRpnrreceivslviueieddoweulsseosrasleSgtshpsraioornunapsl15Roa%enfvdbioeefgwtwrt.oheHueepnoteowdftaeivlvweeniruta,hmnitnhdbee1sare0osrfpeercvpotiribeaowlcnetmipclsareobdpberrllaeoewmdblnseMmcfirosxomemidn- yt Psof students who are capable of subtraction may not be able to infer our informal survey. It is also true that many textbooks include ne that they should subtract, possibly because the problem does not as periodic review assignments, usually at the end of a chapter, cu erial includecuessuchasthewordssubtractordifference.However,if although these assignments typically include a small block of Amson this problem follows other problems requiring subtraction, stu- problemsforeachlesson(e.g.,afewproblemsbasedonthefirst eer dentsknowthestrategyinadvance.Infact,theycouldsolvethis hp lesson of the chapter, followed by a few problems based on the bytthe problemwithoutreadinganythingotherthanthetwointegers(24 secondlesson,andsoforth).Moreover,thetraditionalmathemat- pyrightedsolelyfor astnudAdes1nid0tse).tforPousmotlvaenexocwtuhoseirnrdgwpsratouybd,leebnmltosscfwkreoidtmhophuratavcrtieinacgdeitnosgodmainsecytirmiwmeoisrndaastl.elobwes- isscouslmuttaeiobxnltesboowonkotreikasrb-ioanwockar,ey”apsiainnggewsly,haisncudhpopsulteurmdsueernnvtteseydairnoedriacreastkpeelsadcthetadottbwhyersiaetew“ctohorenki-r- coed tween different kinds of problems, blocked practice can also im- booksrelymoreheavilyonblockedpractice than do the textbooks. isnd pede the learning of the association between a problem and an entnte appropriatestrategy.Forexample,theinstruction“Findtheperim- Unfortunately, the predominance of blocked practice cannot be mi preciselygaugedbecauseteachersmayomitpartsofthematerials docucleis eintegr”thiendliecnagtethssuonfamthbeigsuidoeussloyfththaettghievepnropbolelymgoisns(oel.vge.,dabsyqaudadre- adopted by their school or school district, or they might choose hisarti with sides of length 3), and this salient feature of the problem theirownmaterials(e.g.,assignmentsfreelydownloadedfromthe Ts Internet). Nevertheless, it appears that the vast majority of math- hi presumablymakesiteasierforstudentstorecognizewhatkindof T ematics students devote most of their practice effort to blocked problem it is (perimeter problem). Yet, if a practice assignment practice.Forthatreason,blockedpracticeservedasthecontrolin includes a block of perimeter problems, students can solve each problemwithoutreadingorattendingtotheinstruction“Findthe thepresentstudy. perimeter.” This repeated failure to perceive the word perimeter Inanalternativeapproachthatservedastheinterventioninthe weakenstheassociationbetweenthekindofproblem(perimeter) present study, practice problems are merely rearranged so that a and the strategy (add the lengths of the sides). In effect, blocked portion of each assignment includes a set of different kinds of practiceallowsstudentstocompleteanassignmentwithoutbeing problemspresentedinanintermixedorder—atechniqueknownas awareofthekindofproblemtheyweresolving. interleaved mathematics practice (e.g., Higgins & Ross, 2011; Blocked mathematics practice is prevalent. We inspected sev- Richland,Bjork,Finley,&Linn,2005;Richland,Linn,&Bjork, eral commonly used middle school mathematics textbook series 2007; Rohrer & Taylor, 2007; Schmidt & Bjork, 1992). With and found that most of the practice problems in each textbook interleavedpractice,studentsmustlearntochoosethestrategyon appear in a block of problems devoted to the same concept or the basis of the problem itself. One hypothetical illustration of procedure. In particular, the prototypical assignment may in- interleavedmathematicspracticeisshowninFigure2. INTERLEAVEDPRACTICE 3 Assignment 25 26 27 28 29 30 35 40 50 1 (cid:2)(cid:2) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) 4 problems on the skill 2 (cid:2) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) learned 3 (cid:2) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) that day 4 (cid:2) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) 5 (cid:4) (cid:3) (cid:3) (cid:2) (cid:2) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) 6 (cid:5) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:2) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) 1 problem 7 (cid:6) (cid:2) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) on each of 8 different 8 (cid:7) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) skills 9 (cid:2) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:2) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) hers.broadly. prleeavrionuesdl y 1101 (cid:8)▮ (cid:3)(cid:3) (cid:2)(cid:3) (cid:3)(cid:3) (cid:3)(cid:3) (cid:3)(cid:3) (cid:3)(cid:3) (cid:3)(cid:3) (cid:3)(cid:3) (cid:3)(cid:3) (cid:3)(cid:3) (cid:3)(cid:3) (cid:3)(cid:3) (cid:3)(cid:3) (cid:3)(cid:3) (cid:3)(cid:3) (cid:3)(cid:3) (cid:3)(cid:3) (cid:3)(cid:3) (cid:3)(cid:3) (cid:3)(cid:3) (cid:3)(cid:3) (cid:3)(cid:3) (cid:3)(cid:3) (cid:3)(cid:3) (cid:2)(cid:3) s publinated 12 (cid:9) (cid:3) (cid:3) (cid:3) (cid:3) (cid:2) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3) dmi salliedisse Fbliogcukreo2f.fouInrteprrloebalveemdsm(asqthueamreast)icasnpdraecitgihcet.pIrnobthleismhsyopfotihnetetirclaelavileldustprraatciotinc,eA(snsoing-nsmqueanrte2s)5.iFnocrluedxeasmapslme,ailfl eofittobe Aonsseiagcnhmoefneti2g5htfodlilfofewresnatlseksislolsnleoanrnperodpeoarrtliioenrsi,nitthweocuoludrisnecolurddeufroinugraprporbiolermcosuornsep.rEoipgohrttiaodndsitainodnaolnperopproobrtlieomn onot problemsaredistributedacrosssubsequentassignments.Theemptysquaresareplaceholdersforunidentified n oris kindsofproblems. ationand cier sous In addition to the juxtaposition of different kinds of problems afinaltestrequiringbatterstohitpitchesofallthreetypeswithout s Aal within the same assignment, interleaved practice guarantees that knowingthetypeofpitchinadvance,justastheywouldneedto ologicalindividu penrotbalsesmigsnomfetnhtess(aFmigeurkein2d).aDreodziesntrsibouftestdudoiressphaacveeddacermoossnsdtirfafteerd- dmoatiincsategsatmine.wThhicishksitnuddeonftsbdatotinnogttkenstowistahnealkoignoduosftoproabmleamthien- he thatspacingimprovesclassroomlearning,andtheeffectofspacing advance. ch yt Psof is one of the largest and most robust effects in the learning Withregardtomathematicslearning,weknowoffivestudiesof ne literature (e.g., for recent reviews, see Cepeda, Pashler, Vul, interleavedpractice,andfourofthesestudieswereconductedina as cu erial Wixted, & Rohrer, 2006; Dunlosky, Rawson, Marsh, Nathan, & nonclassroom setting. In the first of these studies, Mayfield and Amson Willingham,2013;Küpper-Tetzel,2014;Roediger&Pyc,2012). Chase (2002) had remedial college students learn several simple eer Furthermore,severalstudieshaveshownthatspacingcanimprove algebraic rules (e.g., x5 x2 (cid:2) x7) with a practice schedule that hp ythe the learning of mathematics (Bahrick & Hall, 1991; Gay, 1973; provided either interleaved or blocked practice, and interleaved bt yrightedolelyfor G2sp0ra0oc6tie)n,.g1In9in9tth5ee;rvRcaroleshartbeieortn&woeTfenainyctleoorrnl,es2ae0vcu0edt6i,vm2ea0pt0hr7oe;bmYleaamtizcsdsaoanfsist&higenZsmeabemrnoetwsk,sitknhide, ptehxroaacuctgtilchyetthhpeerostdwaumoceegdprosrouubpplesermioofsrsotterusdetvesnecntosrteihnse(tsehafimfseecsttnusudimzyebdueirndkonnfooptwrroneb)c.leeAimvles- ps coed might expand, meaning that a particular kind of problem might becausethestudywasnotdesignedtoassessinterleavedpractice, isnd appear initially in each of several consecutive assignments and webelieveitisthefirstdemonstrationofamathematicsinterleav- entnte thenturnupwithdecreasingfrequencythereafter,asinthehypo- ingeffect.Inalaterstudythatexplicitlycomparedinterleavedand mi docucleis tbheettwiceaelnilcluosntsreactiuotnivienpFriogbulreem2s.oAflttehrenastaimveelyk,inthdemspaaycibnegfiinxteedrvsaol btolofcikneddtphreacvtoiclue,mReohorfesreavnedraTlaoyblosrcu(2re00s7o)litdasug(he.tgc.o,lslpegheersotiuddeanntds hisarti that problems of the same kind appear once every, say, week or spherical cone) and found a positive interleaving effect on a test This two,asinthepresentstudy.(Thereissomedebateaboutwhether given 1 week later (Cohen’s d (cid:2) 1.34). This finding was later T equal or expanding spacing intervals are more effective, and the replicated (with the same materials but a different procedure) by optimalchoiceseeminglydependsonavarietyofcircumstances, LeBlancandSimon(2008),whofoundalargeinterleavingeffect e.g.,Balota,Duchek,&Logan,2007;Küpper-Tetzel,2014;Storm, ((cid:5)2 (cid:2) .32) and further observed that interleaving improved stu- p Bjork, & Storm, 2010). To summarize, interleaved mathematics dents’ ability to predict their test scores. Finally, Taylor and practice has two beneficial features: problems of different kinds Rohrer(2010)taughtfourth-gradestudentshowtosolveproblems are juxtaposed, which requires students to choose a strategy, and relatingtoprisms(e.g.,“Findthenumberoffacesonaprismwith problemsofthesamekindarespaced,whichimprovesretention. a 5-sided base”), and they found that a session of interleaved Theearlieststudiesofinterleavedpracticeexamineditseffects practice (rather than blocked practice) led to greater scores on a onskilllearning(e.g.,Hall,Domingues,&Cavazos,1994;Shea& testgiven1daylater(d(cid:2)1.21). Morgan,1979).Forinstance,inthestudyreportedbyHalletal., Most recently, Rohrer, Dedrick, and Burgess (2014) assessed college baseball players practiced hitting three types of pitches the effects of interleaved mathematics practice in a classroom- (fastball, curveball, and change-up) that were either blocked by basedexperiment.Seventh-gradestudentsreceivedadozenprac- typeorinterleaved,andinterleavedpracticeledtobetterhittingon tice problems of each of several kinds that were interleaved or 4 ROHRER,DEDRICK,ANDSTERSHIC blocked, and interleaved practice produced greater scores on a the test. This in turn guarantees that these students benefit from finaltest(d(cid:2)1.05).Unlikethekindofproblemsusedinprevious spacedpractice.Inbrief,theinclusionofareviewensuresthatthe studies of interleaving, the different kinds of problems were su- counterfactualusedinthepresentstudywillbemoreeffectiveand perficially dissimilar (e.g., proportion word problems, solving a morecharacteristicofprevailingteachingpracticesthanthatused linearequation,graphingequations),showingthatthebenefitsof inpreviousstudiesofinterleaving. interleaving are not necessarily limited to scenarios in which The second difference between the present study and previous studentsseeonlysimilarkindsofproblemslikethosechoseninthe interleavingstudiesisthatthepresentoneincludedanindependent laboratorystudiessummarizedpreviously. manipulationoftestdelay(1or30days).Thiswasdonesothatwe Thepresentstudydifferedfrompreviousstudiesofinterleaved couldassesswhetherthebenefitsofinterleavedpracticedecrease mathematicspracticeintwofundamentalways.First,inthepres- overtime.Suchafindingwoulddramaticallycurtailtheutilityof entstudy,thelastpracticeassignmentwasfollowedbyareview. interleaved practice, and this possibility is not a straw man hy- Thoughseeminglyinnocuous,theinclusionofareviewaddresses pothesis. In fact, even some recommended learning strategies aweaknessthatisinherentinadesigncomparinginterleavedand produceaboostintestscoresthatdecreasesmarkedlywithinafew y. blocked practice. Without a review, the use of interleaved rather weeks(e.g.,Driskell,Willis,&Cooper,1992). shers.broadl tlhasatnpbralocctikceedpprorabcletimceoifnetraicnhsikcainlldyasnhdorthteentsestht,eadseilllauystbraettewdeebnytthhee theIinr ttehaecheexrpse’riumsuenalt lreespsoorntesdanhderer,ecseeivveendtha-sgsriagdnemsetnutdsenthtsatsawwe publinated hypothetical illustration in Figure 2. This confounding works in created.Everystudentreceivedthesameproblems,butthesched- dmi favor of interleaved practice because shorter test delays improve ulingoftheproblemswasalteredsothatstudentsreceivedblocked salliedisse teeqsutastceodreths.eTdheelaiyncbleutswioenenofthaerefvinieawlpirnacthtieceprpersoebnltesmtuadnydththereetfeosrte, o1roirnt3e0rledaavyesdlpatrearctbicye.anLautnera,nsntouudnencetsdrteecseti.vedareview,followed ite ofob as shown in Figure 3. However, even with a review, most of the oneott practice problems appeared later in the experiment if practice Method orsn problems were interleaved rather than blocked, although this dif- i ationand ferFenucrteheisrmarogrue,abtlhyeainncinlutrsiinosnicobfenaefrietvoiefwintienrlethaevepdrepsreanctticsetu.dy Participants cier sous means that the blocked practice condition is a more suitable ThestudytookplaceatalargepublicmiddleschoolinTampa, s ologicalAindividual cbboleoufocnkrteeerdfaapccrtuaumcatliu.clTeathiaivssesiisgenxbmaemceanutossreohefivtgeehnn-stgteiaavkceehsethrtseeiswrt.hstoFuodrreelnyintsshteaaanvrceielvy,ieaowln- Ftoeflaoctrhhideearts,eadancuhdriennrgsinehthaoedf2ttha0ue1ig3rh–st2evm0e1in4dtdhsl-ecghrsoacodhleocoylleaasmrs.eastThphearmerteaitcimicpsaattfheoedrm.mEataoiccrhes chhe thoughstudentsmighthaveaddedfractionsinonlythefirstweek than5years.Theparticipatingclassesincludedonlystudentswho yt Psof oftheschoolyear,areviewprovidesonemoredoseshortlybefore hadreceivedapassingscore(3orhigheronascalefrom1to5) anse ontheGrade6mathematicssectionofthe2013FloridaCompre- cu erial hensiveAssessmentTest(FCAT,Version2.0;FloridaDepartment mn Aso ofEducation,BureauofK–12Assessment,2014),whichtheyhad heper taken in April 2013, near the end of the previous school year. A ythe passingscoreonthistestwasachievedby58%ofthesixth-grade bt yrightedolelyfor ssttuuPddaeernntttissciaipntatttihhoeenpsaitnartteicthi(peFalotsirtnuigddayscDhreeopqoaulriatrmneddenbdtyooc5fu2Em%deunoctfaattthiiooenns,io2xf0th1p3ga)rr.aednet ps coed permissionandstudentassent,whichwereceivedfrom150ofthe sd in 164 students in the participating classes. Of these 150 students, mentinte 126 (84%) attended mathematics class on both the day of the hisdocuarticleis utshtnueadinrenndotasut.naNcewedaerrrleeyveiaevnwearlyaynzsdetudtd.heeTndhtauwysa,osft1ht2heeyfueinanraaslnonsloadumanptclteehdeitnbecseltgu,iadnnenddinog1n2oly6f Ts hi thestudy,and61weregirls(48%). T We did not ask students for information about their socioeco- nomic background or ethnicity because of privacy concerns, but the school district provided demographic data for the sample in aggregate. By these data, 38% of the students received free or reduced-pricelunch,andthesamplewasethnicallydiverse(10% Asian, 14% Black, 22% Hispanic, 6% multiracial, and 47% White). Figure 3. Procedure: The 10 assignments included 12 graph problems and12slopeproblems.The12problemsofeachkindwereeithergrouped Materials intoasingleassignment(blockedpractice)ordistributedacrossmultiple assignments(interleavedpractice).Thedarksquaresindicatethelocation Students received graph problems and slope problems, and no of the graph problems. The location of the slope problems is given in studentsawthesameproblemmorethanonceduringtheexperi- AppendixA. ment.Graphproblemsrequiredstudentstographalinearequation INTERLEAVEDPRACTICE 5 oftheform,y(cid:2)mx(cid:3)b,wheremandbwerenonzerosingle-digit remainingeightproblemsimmediately,whichistosaythatall12 integers. Examples include y (cid:2) 2x (cid:6) 1, y (cid:2) (cid:6)x (cid:3) 3, and problemsofaparticularkind(graphorslope)appearedinthesame y(cid:2)(cid:6)3x(cid:3)2.Eachproblemincludedtheinstruction“Graphthe assignment. With interleaved practice, the remaining eight prob- equation”andwasaccompaniedbyaCartesiangrid.Studentswere lemsweredistributedacrosssubsequentassignments(Figure3and permittedtouseanyappropriatemethod,buttheyweretaughtto AppendixA). find points by substituting at least two x values into the equation Studentsreceivedthe10assignmentsonDays1,6,14,32–33, andfindthecorrespondingyvalues.Forexample,fortheequation 33 or 35, 35 or 38, 45–46, 72–75, 81–82, and 86–88. Students y (cid:2) 2x (cid:6) 1, the substitution of x (cid:2) 2 yields y (cid:2) 3. For slope were asked to complete each assignment before the following problems,studentsfoundtheslopeofthelinepassingthroughtwo school day, and the final practice assignment was collected by givenpointsontheCartesianplane.Eachproblembeganwiththe teachers on Days 87––89. On the due date for each assignment, instruction, “Find the slope of the line that passes through the teacherspresentedthesolutiontoeveryproblemwiththeaidofa points”followedbyapairofpointssuchas“(1,5)and(8,9)”or slide show created by the authors. As teachers presented the “(3, 1) and (9, –4).” Students were taught to find the slope by solutions,studentswereaskedtocorrecttheirerrors.Teachersthen y. calculating(cid:7)y/(cid:7)x,whichisknowncolloquiallyas“riseoverrun.” collectedtheassignments.Withinthreeschooldays,oneormore shers.broadl Fsloorpeex4a/m7.pIlne,evtheerylisnleoppeaspsrionbgletmhr,otuhgehtwpooingtisve(n1,p5o)inatnsdha(8d,in9t)ehgaesr awuitthhoorustvmisaikteindgthaenyscmhaoroklsaonndtshceoraesdsigenacmhensttus.deTnhte’saasssisgignnmmeenntst publinated coordinates,andtheslopeequaledanonzerofractionbetween–1 werethenreturnedtotheteachers. dmi and1. Students’ scores on the practice assignments do not provide a salliedisse vtiaolnids bmeefaosrueregiovfinlgeatrhneiinrgabsseicganumseensttsudteonttsheciorrtreeacctehdertsh.eEirvesonlui-f ite Design ofob teachers had collected the assignments at the beginning of class, oneott Wemanipulatedpracticeschedule(interleavedorblocked)and thestudentsmighthavereceivedhelpfromtheirparentsorother orsn testdelay(1or30days).Testdelaywasmanipulatedbyrandomly students. This ambiguity is typical of students’ mathematics as- i ationand a3s0s-idganyindgeleaayc(hns(cid:2)tud6e3ntfowrietahcinhgeraocuhp)c.laTshsistomeeiatnhterthtahteea1c-hdacylaossr spirgancmticeentass,saingdnmmeanntys.teachersencouragestudentstoseekhelpwith cier sous includedstudentsatbothtestdelays. Yetthescoringofthepracticeassignmentsprovidedanobjec- s Aal Practice schedule was a counterbalanced within-subject vari- tive measure of the fidelity of the intervention (which consisted hologicaleindividu aprebrcoleebi.lveSemtdusdtheaenntdrsevbinelorsGcekr.eoGduprporu1apcrte1icc(eenivo(cid:2)efds5li9on)pteeirnlceplaruovdbeedldempfrosau,craticncldeasoGsfersogu(rtapwp2oh stahosesleiglsynchmoofeontlhtseretavosesatilhgeendimrtehsntauttsd)ee.anMcthso,staetnaimdchpseotrurtddaeinsntttr,sitb’huestseeeldf-scecoaocrrrhiencgotefvditshisetosl1uto0- ch Psyoft taughtbyTeacherA,andtwotaughtbyTeacherB).Group2(n(cid:2) tionsfurtherdemonstratedthattheteacherspresentedthesolutions ne 67) included five classes (two by A, two by B, and one by C). tothepracticeassignments.(Ofcourse,thisperfectrateofteacher as cu erial Classes were assigned to groups as follows. Two of the classes compliance might have been achieved because we collected the Amson were designated as “honors/gifted” by the school, and these two assignments.) The scoring of the assignments also provided a eer classeswererandomlyassignedtodifferentgroups.Theremaining rough measure of student compliance. When the graph or slope hp ythe seven classes were deemed by the school as being at the same problems were blocked, students averaged 81% correct. In the bt yrightedolelyfor ltpehaverettilwc,ioapnagdtrioneugapccshlawosisfththhtaehdseeacncolneasqstsureaasilnwntutahmsabtraetenradocofhmecrllysaswasseitsshigimnneoedraectohthaognnroeounopef. it(nhwteheyrilcaehvavewreaedgreperdtahc8et2ic%oenclcyoonrpdrreioctibtolnefom,rssttuhtdheeanltatsswtaeevrieegrhaptgaerotdfo8tfh4e%an1c2ionrptrereroclbet,laevamnedds ps coed The two groups scored similarly well on a test consisting of six assignment, as shown in Figure 3). Thus, by this measure, the isnd multiple-choice problems from the Grade-8 mathematics portion interventionandthecounterfactualproducednearlyequalratesof entnte of the National Assessment of Educational Progress, or NAEP studentcompliance. mi docucleis (vNs.a7ti9o%nal(SCDen(cid:2)ter2f2o%rE),dtu(1c0at8i)on(cid:2)S0ta.6ti2st,ipcs(cid:2),20.5143,),C7o6h%en(’SsDd(cid:2)(cid:2)202.1%2). proObnlemDasycsre6a6te–d6b9y,tehveesrychsotoulddeinsttrriecct,eaivneddthaislarergveiewsetasosfigrnemvieenwt hisarti wasdesignedtopreparestudentsforastandardizedsemesterexam Ts Thi Procedure given to all students in the district. (The exam is taken on a computerwithoutthepresenceofateacher,andtheteachersdonot The study consisted of 10 practice assignments, a review ses- seethetestitemsinadvance.)Thereviewassignmentincludedtwo sion,andatest.Eachpracticeassignmentconsistedof12problems problems on the graphing of a line and four problems on slope, presentedontwosidesofasinglesheetofpaper.The10assign- though the problems were stated differently than the ones in the mentsincluded12graphproblemsand12slopeproblems,andthe study. remainingproblemsweredrawnfromunrelatedtopics(fractions, Beforethecompletionofthepracticephase,teacherscompleted proportions,percentages,statistics,andprobability).Teacherspre- an anonymous survey about their views on interleaved practice. sentedatutorialonthegraphproblemsimmediatelybeforegiving Eachofthethreeteachersreceivedapapercopyofthesurveyon Assignment 1, which included the first four graph problems, and Day 66. We visited the school on Day 75 and collected an theypresentedatutorialontheslopeproblemsimmediatelybefore envelope with their completed surveys. The survey is shown in givingAssignment2,whichincludedthefirstfourslopeproblems. AppendixB. However, the scheduling of the remaining eight graph and eight EverystudentreceivedthesamereviewonDay93,about5days slope problems varied. With blocked practice, students saw the afterteacherscollectedthelastpracticeassignment(Days87–89, 6 ROHRER,DEDRICK,ANDSTERSHIC dependingontheclass).Thereviewincludedonegraphproblem, Interleaved one slope problem, and eight unrelated problems. The graph and Blocked slopeproblemswerethesixthandseventhproblem,respectively. Students received the review assignment at the beginning of the classperiod,andteacherspresentedthesolutionsattheendofthe e r 80% same class period. Teachers then collected the assignment from co 74% S students,andoneoftheauthorscollectedtheassignmentsfromthe teachers at the end of that school day. The mean scores on the st 64% e review problems were slightly higher, but not statistically so, for T problems learned by interleaved practice rather than by blocked an 42% practice(94%vs.89%).Again,wepresentthesedataasameasure Me ofcomplianceratherthanameasureoflearningbecause,aswith the practice assignments, students were given an opportunity to y. correcttheirsolutionsbeforeturningintheirassignments. publishers.natedbroadl woneSeretautudeteshntoetrdspdwruoercrientogtreetshdteetidhrer1eagdoumrlai3rn0cisltadrsaasytismoneaefotteifnregta,hcaehndrteetvshti.eewFteo.arScehtuaecdrheannotdsf 1 day Test Delay 30 days itsalliededissemi twshiseetrietnwgnooottfesssctihxdeadmtuealstehd(1ptoaronrbdelce3em0ivsdeauytnhsreealaftetteesrtdtrhteoecetriheveveideewxap)e,firsliltmeurdeentent,ststalcwlohnoo-f Fdcoeigllaouyrrsev.e4Er.srirooRnrebosafurltsthsir:seIpfnirgteeusrerlene.atv1insgtapnrdoadrudceerdrogrr.eSateeerttheestosncloinreesaarttibcloethfotresat ofob which were drawn from the Grade-8 mathematics section of a oneott recentNAEP(NationalCenterforEducationStatistics,2013).We orsn askedteachersnottoinformstudentsofthetestsinadvance,and sons.Eachdifferencewasassessedbyanindependentttest,andin i ciationerand tceoamchpelersteddi.dTnhoettseeset abnoyoktleesttipnrcolbuldeemdsaunctoivletrhesheexepte,raimsehnetetwoasf trhejreeceteodf.Wtheetfhoeurrefcoarseeds,idthneotaussseumthpetipoonoloefdeesqtuimalatvearfioarntcheesewrroasr sous paperwiththreegraphproblems,andasheetofpaperwiththree term for the t-statistic, and we adjusted the degrees of freedom s ologicalAindividual stphlroeopbeplerpmorboslbeplmeremscsew.dWeitdheitnhcereeapactaehgdepswiaxgitevh,etrahsnieodngsrtahopefhtphpaergoetbelsewtmibtsyhirntehotehrdrseeleroinpogef ua1fs-fdienacgytttthehseetodWuetlecaloycmh,–einSotaeftrtaleenratyhvweodfatirhtaeethmfeoreuttrhhnoaudnl.lbThloyhcpiksoetcdhoeprsrriesaccttteiiosctnes.rdFeisodurlnttheodet chhe the six versions. None of the problems had appeared in either a in higher mean test scores for the graph problems, 89% (SD (cid:2) yt Psof practiceassignmentorthereview.Studentswereallotted18minto 18%)vs.73%(SD(cid:2)36%),t(50.6)(cid:2)2.25,p(cid:2).029,d(cid:2)0.54, anse complete the test and allowed to use their school-supplied basic but the effect of interleaved practice on the slope problems was cu erial calculator.Eachtestwasscoredattheschoolonthedayofthetest positivebutnotstatisticallysignificant,73%(SD(cid:2)41%)vs.54% Amson by two raters who were blind to condition. The two raters inde- (SD(cid:2)47%),t(56.0)(cid:2)1.67,p(cid:2).10,d(cid:2)0.43.Forthetestgiven heper pendentlyscoredeachanswerascorrectornotandlaterresolved aftera30-daydelay,therewasastatisticallysignificantbenefitof bytthe the few discrepancies (six in 756). Internal consistency reliabili- interleaving for both graph problems 84% (SD (cid:2) 30%) vs. 54% yrightedolelyfor tsileosp,eaasnmdegarsauprheidngbyprCobrolenmbasc,hr’esspaelpcthiav,elwy.ere .89 and .77 for the p(pSr(cid:2)oDbl.(cid:2)e0m014s,,46%d5)(cid:2)%, t0((S5.8D67.7.(cid:2)) (cid:2)43%3.)2v8s,.p29(cid:2)%.(0S0D2,(cid:2)d3(cid:2)9%0).,8t1(6,1a)n(cid:2)d s3l.o4p4e, ps coed Results The results of the teacher survey are shown in Appendix B. sd mentiinten Interleaved practice produced higher test scores than did Atoltghiovueghthteeiarchhoenrsesrtesapsosnesdsemdeanntso,nythmeosuasmlypalendsiwzeeroefeonncolyurtahgreede Thisdocusarticleis bs6hl4oo%cwkee(ddSDaprma(cid:2)cotdic4eer2a(%tFe)i,gbuetr(ne6e2f4i))t.o(cid:2)Sftuin2dt.e3enr9tl,seatpvesint(cid:2)egd,.18002d%,ayd(SafD(cid:2)ter(cid:2)0th.43e23r,%ev9)i5ev%ws. ttfeeuaatucchhreeerrisfinimtdweicaaanstseadnthtoahtpatttihohenes”eoardnsadhtae“wawroeouulsldpder“ecucuoslaemtitmvheeeniandttebthreveseti.nntStieotrinvlle,innetaitohcnhe Thi confidenceinterval(CI)[0.07,0.77].Studentstested30daysafter to other math teachers.” All three also reported that interleaved the review showed a large benefit of interleaving, 74% (SD (cid:2) practicedidnot“interferewithhow[they]usuallyteach”andthat 39%)vs.42%(SD(cid:2)43%),t(62)(cid:2)4.54,p(cid:8).001,Cohen’sd(cid:2) “going over assignments” was no harder when assignments were 0.79, 95% CI [0.43, 1.15]. A two-way analysis of variance (with interleavedratherthanblocked.However,theiropinionsweresplit practice schedule as a within-subject variable and test delay as a when they were asked whether their students found interleaved between-subjects variable) showed that interleaved practice was practice to be less likable, more challenging, or more time- superior to blocked practice, F(1, 124) (cid:2) 24.43, p (cid:8) .001, (cid:5)p2 (cid:2) consumingthanblockedpractice. .165,andthattestscoresweregreaterattheshortertestdelay,F(1, 124)(cid:2)7.69,p(cid:8).01,(cid:5)2(cid:2).058.However,theinteractionbetween p Discussion practice schedule and test delay was not statistically significant, F(1,124)(cid:2)2.84,p(cid:2).09. Thepresentstudyexplicitlycomparedinterleavedandblocked Secondarily, we analyzed the effect of interleaved practice on mathematics practice in a classroom setting and found that inter- testscoresforthegraphandslopeproblemsseparatelyforboththe leavedpracticeproducedsuperiorscoresonafinaltestgiven1or 1-dayand30-daytestdelays,resultinginfourdifferentcompari- 30dayslater.Putanotherway,themererearrangementofpractice INTERLEAVEDPRACTICE 7 problems improved mathematics learning in the classroom. The suggest that Saxon texts produce higher test scores than do non- study is also the first to demonstrate that the test benefit of Saxon texts. This is because Saxon texts differ from non-Saxon interleavingdoesnotdiminishovertimeandperhapsgrowslarger. texts in a number of ways other than the use of interleaved Finally,apartfromitssuperioritytoblockedpractice,interleaved practice,andoneormoreoftheseotheruniquefeaturesmaywork practiceprovidednearimmunityagainstforgetting,asthe30-fold againsttheefficacyofaSaxontext.InSaxontexts,forexample, increaseintestdelayreducedtestscoresbylessthanatenth(from even the lessons are intermixed so that lessons on related topics 80%to74%). (e.g.,prism,cylinder,pyramid,andcone)donotappearconsecu- Although the size of the effects might seem surprisingly large tively—a feature that is not supported by the present study. Inci- forastudyconductedinaclassroom,theeffectsizesobservedhere dentally, Saxon texts have been criticized by some educators areneverthelessmuchsmallerthaninterleavingeffectsobservedin becauseoftheirpurportedemphasisonthemasteryofprocedures the laboratory. Whereas the effects in the present study were attheexpenseofconceptualunderstanding(e.g.,Kamii&Domin- medium to large (ds (cid:2) 0.42 and 0.79), laboratory studies of ick, 1998). However, we emphasize that this criticism of Saxon interleaving have uniformly found larger effects (d (cid:2) 1.34, d (cid:2) textsisorthogonaltotheefficacyofinterleavedpractice.Noneof y. 1.21,and(cid:5)2(cid:2).32;seeintroduction).Inbrief,thepresentfindings theauthorsofthepresentstudyhaveeverhadanyaffiliationwith shers.broadl avreentaionninlsotsapenstiastoiomne—onfotitsa vefiofilcaaticoyn—whoefnthiet iasdamgeovtehdatfarnominttehre- SaxInotnertleexavtbeodomksa.thematicspracticeappearstobeafeasibleinter- publinated laboratorytotheclassroom(e.g.,Hulleman&Cordray,2009). vention. Creators of mathematics textbooks or instructional soft- dmi Another reason for the large effects of interleaving observed ware need only rearrange practice problems before releasing the salliedisse henertleyangduaerlasnetweehserethiastthstautdienntetsrlesapvaecdemthaethirempraaticctsicper.acTthicaet iinsh,eirn- nimexptleemdietniotant,iownitwhoouutldalatelsriongsetehmeptororbelqeumirseorrellaetsisvoenlys.lCitltalesseroffoomrt ite ofob additiontothejuxtapositionofdifferentkindsofproblemswithin fromteachersbecausetheyneednotaltertheirclassroomlessons oneott an assignment, problems of the same kind are spaced across or the manner in which they solve a particular problem. The orsn assignments. However, the review session in the present study intervention would also presumably require little or no teacher i ationand maltehaonutgthhattoeavelnestsheerbdleogcrkeeedthparnactthicaet cporonvdiidtieodnbpyrotvhiedeindtesrplaecaivnegd, tdrearisntianngd, tahlteholouggihcutenadcehrelyribnugyi-nitnermleiagvhetdrepqraucirtieceth(antatmeaeclyh,ertshautni-t cier sous practice condition (Figure 3). In brief, the large effect observed requires students to choose a strategy and not merely repeat the s Aal here probably reflects the spacing effect, which is an inherent strategyusedinthepreviouspracticeproblem).Thefeasibilityof ologicalindividu bspeanceifnitgomfiingthetrlheaavveedbemeanthreemduacteicdsbpyratchtieceu,sbeuotfthaerceovnietrwibsuetisosnioonf. aitn, yinetterlvitetlnetiiosnkanlosowdneapbeonudtstohnewlihkeatbhielirtystuodfeinnttsearlnedavteeadchperarsctliickee. he Thelargeeffectsnotwithstanding,thepresentstudyhaslimita- The few teachers in the present study indicated that they liked ch yt Psof tions.Forinstance,althoughthetestproblemswerenovel,thetest interleaved practice, even before the study was complete (i.e., ne problems and practice problems had the same format, and the beforetheylearnedoftheintervention’sefficacy),buttheirviews as cu erial observedeffectsmighthavebeensmallerifthetestproblemshad might have been biased because of their close involvement with Amson required a greater degree of transfer. Also, the test benefit of theproject.Also,thepresentstudydidnotincludeasurveyofthe eer interleaving might have been reduced if the review had included students.Futureresearchisneededtobettergaugebothstudents’ hp ythe more than one problem of each kind (graph problem and slope andteachers’perceptionsofinterleavedpractice. bt yrightedolelyfor phinratoveberlleebmaevn)ee,dfsitiptmeradpclttyhicebeebcclooancukdseeitdiaopnmr.aoMcrteiocreienctbeornnosdaiivdteiloyrn,eimvtiroeewrmeasthienasssniuoitnndkmindoigwthhnet pproaAtcetpniatcireatlfmbrorigemahdtittshbeecfofuinscetarfciubyluataentsdaaflselamlseivubecillhistytoo,finthmteearltiehmaepvmaeacdttimcosaf,thaanenmdinatttheicirss- ps coed whethertheinterleavingeffectsobservedherewouldbefoundin ventionasdoesitsefficacy.Indeed,benefitsofinterleavedpractice isnd a study with a wider variety of material and a greater number of have been consistently observed with a variety of mathematics entnte teachers and students. Still, the ecological validity of the present skillsandwithstudentsinelementaryschool,middleschool,and mi docucleis sthtuedlyeawrnaisngrepahsaosneablalystegdoo3dm.oSntuthdse,natsndletahrene1d-mfroonmthttheestirdteelaacyhwerass, cporallcetgicee. Aprsovaridgeusedsthuedreen,tsthewsiethbeannefoitpspoarritsuenibtyectaousleeairnntehrloewavetod hisarti educationallymeaningful. chooseanappropriatestrategy(orlearnthattheycannotdoit).In Ts hi Wealsoshouldemphasizethatthefindingsreportedheredonot short, interleaved practice simply provides students with an op- T suggestthatblockedpracticebeavoidedentirely.Infact,asmall portunitytopracticetheveryskilltheyareexpectedtolearn. blockofproblemsmightbeoptimal,especiallyattheoutsetofan assignmentgivenimmediatelyafterstudentsareintroducedtothat References kindofproblem,perhapsbecauseitgivesstudentsanopportunity tofocusontheexecutionofastrategy(e.g.,proceduralstepsand Bahrick,H.P.,&Hall,L.K.(1991).Lifetimemaintenanceofhighschool computation).Yetstudentswhoworkmorethanafewproblemsof mathematics content. Journal of Experimental Psychology: General, 120,20–33.doi:10.1037/0096-3445.120.1.20 thesamekindinimmediatesuccessionarelikelytoreceivesharply Balota,D.A.,Duchek,J.M.,&Logan,J.M.(2007).Isexpandedretrieval diminishing returns on their additional effort (e.g., Rohrer & practice a superior form of spaced retrieval? A critical review of the Taylor,2006;Son&Sethi,2006). extentliterature.InJ.S.Nairne(Ed.),Thefoundationsofremembering: Although most mathematics textbooks rely heavily on blocked EssaysinhonorofHenryL.RoedigerIII(pp.83–105).London,Eng- practice, the Saxon series of mathematics textbooks include as- land:PsychologyPress. signments with mostly interleaved practice (e.g., Saxon, 1997). Cepeda, N. J., Pashler, H., Vul, E., Wixted, J. T., & Rohrer, D. (2006). Nevertheless,findingsliketheonereportedheredonotnecessarily Distributed practice in verbal recall tasks: A review and quantitative 8 ROHRER,DEDRICK,ANDSTERSHIC synthesis. Psychological Bulletin, 132, 354–380. doi:10.1037/0033- Richland,L.E.,Bjork,R.A.,Finley,J.R.,&Linn,M.C.(2005).Linking 2909.132.3.354 cognitivesciencetoeducation:Generationandinterleavingeffects.In Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981). Categorization and B. G. Bara, L. Barsalou, & M. Bucciarelli (Eds.), Proceedings of the representation of physics problems by experts and novices. Cognitive 27th annual conference of the Cognitive Science Society (pp. 1850– Science,5,121–152.doi:10.1207/s15516709cog0502_2 1855).Mahwah,NJ:Erlbaum. Driskell,J.E.,Willis,R.P.,&Copper,C.(1992).Effectofoverlearning Richland, L. E., Linn, M. C., & Bjork, R. A. (2007). Cognition and onretention.JournalofAppliedPsychology,77,615–622.doi:10.1037/ instruction:Bridginglaboratoryandclassroomsettings.InF.Durso,R. 0021-9010.77.5.615 Nickerson,S.Dumais,S.Lewandowsky,&T.Perfect(Eds.),Handbook Dunlosky,J.,Rawson,K.A.,Marsh,E.J.,Nathan,M.J.,&Willingham, of applied cognition (2nd ed., pp. 555–583). West Sussex, England: D.T.(2013).Improvingstudents’learningwitheffectivelearningtech- Wiley. niques: Promising directions from cognitive and educational psychol- Roediger,H.L.,&Pyc,M.A.(2012).Inexpensivetechniquestoimprove ogy. Psychological Science in the Public Interest, 14, 4–58. doi: education:Applyingcognitivepsychologytoenhanceeducationalprac- 10.1177/1529100612453266 tice.JournalofAppliedResearchinMemory&Cognition,1,242–248. FloridaDepartmentofEducation.(2013).2013Floridastatewideassess- doi:10.1016/j.jarmac.2012.09.002 y. mentscores.Retrievedfromhttp://fcat.fldoe.org/mediapacket/2013/ hers.broadl FloFrliodraidDaeCpoarmtmpreenhteonfsivEedAucsasetisosnm,eBntuTreeasut(oVferKsi–o1n22A.0s)s.eTsasmllaehnats.s(e2e0,1F4L):. Rolheraevre,dDm.,aDtheedmriactkic,sRp.raFc.t,ic&eiBsunrogtelsism,iKte.d(t2o0s1u4p).erTfihceialbleynseifmitiloafrkinintedrs- s of problems. Psychonomic Bulletin & Review. Retrieved from http:// publinated GaAy,utLh.orR.. (1973). Temporal position of reviews and its effect on the link.springer.com/article/10.3758%2Fs13423-014-0588-3. doi:10.3758/ itsalliededissemi Grr1oe7tte1e,n–Mt1i8o.2nG.od.fo(mi1:1a90t9h.51e)m0.3aD7ti/ichsat0rl0ibr3uu4lt5ees9d.5JvoeursrunsalmoafsEsdeducpartaiocntiaclePisnychhigohlogscyh,o6o4l, Rosuh1tre3ed4r,2pD3ra-.0c,1t&i4c-eT0o5an8y8lto-hr3e,Kre.te(n2t0io0n6)o.fTmheatehfefmecattsicosfkonvoewrlleeadrgnein.gApapnldieddisCtroigb-- ofob physics. School Science and Mathematics, 95, 97–101. doi:10.1111/j nitivePsychology,20,1209–1224.doi:10.1002/acp.1266 oronesnott Ha.l1l,94K9.-8G5.9,4D.1o9m9i5n.gtbu1e5s7,3D6..xA.,&Cavazos,R.(1994).Contextualinter- Rophrroebr,leDm.s, &boTosatyslolre,aKrn.in(g2.00I7n)s.trTuhcetiosnhaulfflSincigenocfe,ma3t5h,em48a1ti–cs49p8r.acdtiocie: ationandi fSekriellnsc,e78e,ff8e3c5ts–8w4i1th.dsoki:i1ll0e.d24b6a6s/epbmalsl.1p9l9a4y.e7r8s..3.P8e3r5ceptual and Motor Sa1x0o.n1,0J0.7H/s.1,1J2r.5(11-909077)-.90A1lg5e-8braI(3rded.).Norman,OK:Saxon. cier Higgins, E., & Ross, B. (2011, November). Comparisons in category Schmidt,R.A.,&Bjork,R.A.(1992).Newconceptualizationsofpractice: os ssu learning. Paper presented at the 52nd annual meeting of the Psycho- Commonprinciplesinthreeparadigmssuggestnewconceptsfortrain- Aal aldu nomicSociety,Seattle,WA. ing.PsychologicalScience,3,207–217.doi:10.1111/j.1467-9280.1992 ologicindivi HuTllheemraonl,eCo.fSf.i,d&eliCtyoradnrdaya,cDhi.eSv.e(d20re0l9at)i.vMeoinvtienrgvefrnotimonthsetrleanbgttoh.thJeoufirenlda:l Sh.etab,0J0.0B2.9,.&x Morgan,R.L.(1979).Contextualinterferenceeffectsonthe chhe of Research on Educational Effectiveness, 2, 88–110. doi:10.1080/ acquisition,retention,andtransferofamotorskill.JournalofExperi- yt Psof 19345740802539325 mental Psychology: Human Learning and Memory, 5, 179–187. doi: anse Kamii,C.,&Dominick,A.(1998).Theharmfuleffectsofalgorithmsin 10.1037/0278-7393.5.2.179 ericalu Grades1–4.InL.J.Morrow&M.J.Kenney(Eds.),Theteachingand Siegler,R.S.(2003.)Implicationsofcognitivescienceresearchformath- mn learning of algorithms in school mathematics: 1998 NCTM yearbook eAerso (pp. 130–140). Reston, VA.: National Council of Teachers of Mathe- e(Emdast.i)c,sAedruesceaatirocnh. cInomJp.aKniiolpnattroickp,rinGc.ipWle.sManadrtisnta,n&daDrd.sEfo.rSscchhifotoerl byththep Kemstaetri,cLs..,Kirschner,P.A.,&vanMerriënboer,J.J.G.(2004).Timingof mathematics(pp.219–233).Reston,VA:NationalCouncilofTeachers yrightedolelyfor Küi2pn3pf3oe–rrm-2T5ae2tti.zodenlo,pi:Cr1e.0s.eE1n.0t(a22t3i0o/B1n4:Ti)n.RSlUetarCorn.n0ign0g0e0fsf0tea2ct4tiss1t9ioc1ns..2wI7ne5sa6tkr0u.tech3teioonreatlicSacliegnroceu,n3d2s:, SieosguflbeMtrr,aactRhti.eomnS:a.,tHic&osw.Sdhoracgheirld,rJe.n(k1n9o8w4)w. hSattrattoegdyo?cIhnoCic.eSsoipnhiaadnd(iEtido.n),Tanhde iscopndeds Ugined,e2r2s2ta,n7d1i–ng81t.hedodii:s1t0ri.1b0u2te7d/2p1r5a1c-t2ic6e04e/fafe0c0t0.1Z6e8itschrift für Psycholo- Soonr,iLg.inKs.,o&fcSoegtnhiit,ivRe.s(2ki0l0ls6)(.pMp.e2ta2c9o–g2n9i3ti)v.eHciolnlstdroallea,nNdJo:pEtirmlbaalulmea.rning. entnte LeBlanc,K.,&Simon,D.(2008).Mixedpracticeenhancesretentionand CognitiveScience,30,759–774.doi:10.1207/s15516709cog0000_74 documcleisi mJOeLetaincgcuorfacthyefoPrsmycahtohnemomatiiccaSlosckiieltlys.,PCahpiecrapgroe,sIeLn.tedatthe49thannual Stoarmle,arBn.inCg.,eBvejonrtk:,WRh.eAn.,a&ndSwtohryme,xJp.aCn.d(i2n0g1r0e)t.riOevpatilmpirzaicntgicreeterniehvaanlceass Thissarti Maoynfimeladt,hKem.Hat.i,c&spCrohbalseem,Ps.oNlv.in(2g0.0J2o)u.rTnhaeloefffAepctpslioefdcBuemhualvaitoivreApnraalcytsiicse, lMonCg.-3t8e.r2m.24re4tention. Memory & Cognition, 38, 244–253. doi:10.3758/ Thi 35,105–123.doi:10.1901/jaba.2002.35-105 Taylor, K., & Rohrer, D. (2010). The effect of interleaving practice. NationalCenterforEducationStatistics.(2013).Thenation’sreportcard: AppliedCognitivePsychology,24,837–848.doi:10.1002/acp.1598 Afirstlook.2013mathematicsandreading(NCES2014–451).Wash- Yazdani, M. A., & Zebrowski, E. (2006). Spaced reinforcement: An ington,DC:U.S.DepartmentofEducation,InstituteofEducationSci- effectiveapproachtoenhancetheachievementinplanegeometry.Jour- ences. nalofMathematicalSciencesandMathematicsEducation,1,37–43. (Appendicesfollow) INTERLEAVEDPRACTICE 9 Appendix A Serial Position of Each Graph and Slope Problem in the Assignments Practiceassignment Students/Problem type 1 2 3 4 5 6 7 8 9 10 Review Group1 Graph 1–4 — 1 7 4 6 10 1 10 10 6 Slope — 1–12 — — — — — — — — 7 Group2 Graph 1–12 — — — — — — — — — 6 Slope — 1–4 1 7 4 6 10 1 10 10 7 y. Note. Forexample,forstudentsinGroup1,Assignment1includedfourgraphproblemsatthebeginningoftheassignment(Nos.1–4),andAssignment s.adl 4includedonegraphproblemnearthemiddleoftheassignment(No.7).Thetwogroupsreceivedidenticalreviewassignments,andthegraphandslope herbro problemswerethesixthandseventhproblems,respectively.Nostudentsawthesameproblemmorethanonceduringthestudy(includingpractice,review, blised andtest). punat dmi salliedisse Appendix B ite eoftob Frequency of Responses of Three Teachers to Statements About Interleaved Practice onot n ors i ciationerand Statement Sdtirsoanggreley Disagree Nneoirthdeirsaaggrreeee Agree Stargornegely os su Asal 1.Goingoverassignmentswasharderformewhentheassignmentswere aldu interleavedratherthanblocked.(Neg) 2 1 ologicindivi 2.Ginotienrgleoavveerdarsastihgenrmtheanntsbtlooockkemdo.r(eNteigm)ewhentheassignmentswere 1 1 1 he 3.UsinginterleavedassignmentsinterferedwithhowIusuallyteach.(Neg) 2 1 ch nPsyeoft 4.Stthuadnenbtlsocthkoeudgahststihgantmienntetsrl.e(aNveegd)assignmentsweremorechallenging 1 1 1 caus 5.Studentsfoundthatinterleavedpracticetooklongerthanblocked erial practice.(Neg) 1 1 1 mn Aso 6.Studentslikedinterleavedpracticelessthanblockedpractice.(Neg) 2 1 eer 7.Interleavedassignmentsimprovedmystudents’learningmorethandid hp ythe blockedpractice. 3 bt 8.Iwouldrecommendinterleavedpracticetoothermathteachers. 3 yrightedolelyfor 190..IIawwchooiuuellvddinuugsseestiiunndtteeerrnllteesaa.vveeddpprraaccttiicceeirnaththeertfhuatunrebliofciktewdapsraacntiocpetiwoint.hlower- 1 1 21 1 ps coed Note. Statementsregardinginterleavedpracticewereframednegatively(Neg)inStatements1–6. sd in mentinte ReceivedMay13,2014 hisdocuarticleis RevisionArcecceepivteeddJJuullyy1111,,22001144 (cid:2) Ts hi T