ebook img

Elementary Molecular Quantum Mechanics: Mathematical Methods and Applications PDF

927 Pages·2013·8.99 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Elementary Molecular Quantum Mechanics: Mathematical Methods and Applications

Elementary Molecular Quantum Mechanics: Mathematical Methods and Applications Second Edition Valerio Magnasco University of Genoa, Genoa, Italy AMSTERDAM(cid:129)BOSTON(cid:129)HEIDELBERG(cid:129)LONDON NEWYORK(cid:129)OXFORD(cid:129)PARIS(cid:129)SANDIEGO SANFRANCISCO(cid:129)SINGAPORE(cid:129)SYDNEY(cid:129)TOKYO Elsevier Radarweg29,POBox211,1000AEAmsterdam,TheNetherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UK 225WymanStreet,Waltham,MA02451,USA SecondEdition (cid:1)2013,2007ElsevierB.V.Allrightsreserved Nopartofthispublicationmaybereproduced,storedinaretrievalsystemortransmittedinanyformorbyany meanselectronic,mechanical,photocopying,recordingorotherwisewithoutthepriorwrittenpermissionofthe publisherPermissionsmaybesoughtdirectlyfromElsevier’sScience&TechnologyRightsDepartmentin Oxford,UK:phone(+44)(0)1865843830;fax(+44)(0)1865853333;email:[email protected]. AlternativelyyoucansubmityourrequestonlinebyvisitingtheElsevierwebsiteathttp://elsevier.com/locate/ permissions,andselectingObtainingpermissiontouseElseviermaterial Notice Noresponsibilityisassumedbythepublisherforanyinjuryand/ordamagetopersonsorpropertyasamatter ofproductsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods,products,instructions orideascontainedinthematerialherein.Becauseofrapidadvancesinthemedicalsciences,inparticular, independentverificationofdiagnosesanddrugdosagesshouldbemade BritishLibraryCataloguinginPublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress ForinformationonallElsevierpublications visitourwebsiteatstore.elsevier.com PrintedandboundinUSA 1314151617 10987654321 ISBN:978-0-444-62647-9 To Charles Alfred Coulson To Paola, my wife To my former Quantum Chemistry students Giorgio Aliani, Mauro Amelio, Luca Arcesi, Paolo Armanino, Cristina Artini, Roberto Austi, Fiorenza Azzurri, Monica Beggiato, Walter Bellini, Angelo Benazzo, Maurizio Benzo, Anna Berti, Luca Berti, Federico Bianchi, Anja Bijedic Mitranic, Sergio Bisio, Claudio Boffito, Vito Boido, Gabriella Borzone, Carlo Bottero, Andrea Briatore, Stefano Brusco, Santino Bruzzone, Giuseppe Burgisi, Vincenzo Buscaglia, Fabio Canepa, Maria Rosaria Carcassi, Francesca Carosi, Silvio Carrettin, Angela Cartosio, Massimo Casanova, Danilo Cassaglia, Rosana Cavalli, Marino Cervetto, RobertaCesari,SilviaCiuffini,FabrizioColace,BiancaCosma,CamillaCosta,Aldo Curti, Marco Delfino, Giovanna Dellepiane, Fabrizio De Melas, Serena De Negri, Maria Grazia Desirello, Silvia De Vito, Ilaria Devoti, Daniele Duce, Roberto Eggenhoffner, Leandro Esposito, Sandro Ferraro, Alessandra Ferretti, Dino Romano Ferro, Giuseppe Figari, Maria Luisa Fornasini, Giuseppe Francese, Ambra Frare, Silvano Fuso, Massimo Gambetta, Silvia Garbarino, Paolo Gatti, Chiara Ghiron, Michele Giardina, Claudia Grandi, Paola Guarnone, Marina Guenza, Roberto La Ferla, Marco Leoncini, Serena Leporatti, Alessandra Leprini, Franco Lichene, Nara Liessi, Andrea Lionello, Romeo Losso, Mattia Lucchini, Costanzo Luzzago, Filippo Maido, Alberto Martinelli, Roberta Martolini, Bruno Matteazzi, Franco Merlo, Valeria Merlo, Giovan Battista Minetto, Tomaso Munari, Riccardo Musenich, Gian Franco Musso, Riccardo Narizzano, Marco Nencioni, Sergio Novelli, Riccardo OlivieriColombo,MassimoOttonelli,DonatellaPaci,SilviaPalacioAzcona,Andrea Palenzona, Christopoulos Panagiotis, Laura Pardo, Paolo Parodi, Lise Pascale, Stefano Passalacqua, Elisa Pastore, Marta Patrone, Gianfranco Patrucco, Enrica Perrotta,RobertoPeverati,MatteoPiccardo,GiulioPieretti,FrancescaPin,Arnaldo Rapallo, Marcello Rasparini, Anna Ravina, Renzo Rizzo, Caterina Rocca, Giuseppe Roncallo, Massimiliano Rossi, Marina Rui, Paolo Russo, Paolo Sacco, Carlo Scapolla, Daniele Scavo, Giovanna Schmid,Andrea Sciutto, Andrea Siciliano, Lucia Somma, Giuseppe Tassano, Anton Thumiger, Giuseppe Tonello, Giulio Andrea Tozzi, Riccardo Tubino, Alessandro Valente, Vito Vece, Massimo Vizza, Gilberto Vlaich, Ugo Zanelli, Maria Teresa Zannetti Preface The idea of a book presenting in a simple way most of the essential mathematical tools beyond elementarycalculus,andpossiblyentitledMathematicalMethodsinMolecularQuantumMechanics, grew for some time in the author’s mind during the many years of teaching and research at the UniversityofGenoa.In2007,Elsevierpublishedateachingbookbytheauthorforgraduateuniversity studentsofchemistryandphysicsentitledElementaryMethodsofMolecularQuantumMechanics,the book being intended as a bridge between the classic elementary Coulson’s Valence and the more advancedMcWeeny’sMethodsofMolecularQuantumMechanics.After5years,thisbooknecessarily needed some revisionand restyling toeliminatevarious misprints. After an intense correspondence with the Elsevier’s editorial board, to avoid the narrowness of asinglemathematicaltext,itwasdecidedtomergethetwobooksintothepresentsinglebook,entitled ElementaryMolecularQuantumMechanics:MathematicalMethodsandApplications.Thenewbook ismostlybasedonthecontentoftheoldone,ofwhichitmaintainstheinterestingelementaryapproach toquantumchemicalapplications,andcontainsanewintroductorypartmorespecificallydevotedto mathematicalmethods.So,thenewbookcanbeconsideredasadeeplyrevisededitionoftheformer Elsevier’sbookwithasensiblyenlargedmathematicalpart.Itishopedthat,inthisway,thenewbook can meet better the students’ needs, enlarging its usability even for university students of applied maths, at least in their first years. Thefirstpartofthebookisnotintendedtocoverallmathematicaltopics,ratheritisintendedto offer the reader in a plane way and more in detail many of the building stones of the advanced mathematicsneededinworkingapplicationsofQuantumMechanicstoQuantumChemistry.Forthe same reason, some important topics are omitted, such as functional, numerical, and computational analysis, but these arguments are so wide that they would imply separate books in themselves. For them, the reader should be addressed to specific treatises or to internet resources. The required background for students of physics and chemistry is still that of a few semester courses in mathe- matical analysis and physics. The book might help as an auxiliary advanced mathematical and physical text of about 60 h for universitystudents ofchemistry, physics,and applied maths. ThemaindifferenceswiththeformerElsevier’sbookarethefollowing.(1)Theshiftingtothenew Chapter 1 of both the fundamental approximation methods of Quantum Mechanics, the variational methodandthevariousperturbativeapproaches(formerlypartlygiveninChapters5and11),(2)the introduction of three new mathematical chapters devoted to the solution of the partial differential equationsofQuantumMechanics(Chapter3),tothetheoryofspecialfunctions,includingFourierand LaplacetransformsandGreen’sfunctions(Chapter4),tothefunctionsofacomplexvariableandthe evaluationofintegralsofarealvariablebythemethodofresidues(Chapter5),(3)thesubdivisionof the former unusually large Chapter 7 into the two new Chapters 14 and 16, the first devoted to the theoryofmodelHamiltonians (Hartree–Fock, Hu¨ckel andapproximate MO methods),the second to the correlation problem and to the Post-Hartree–Fock methods, (4) the accurate revision of the old Chapter12onatomicandmolecularinteractions,whichwascompletelyre-writtenandupdatedinthe newChapter17,(5)theadditionoftheGaussianGTOapproachbesidestheprevalentSTOapproachin theevaluationofmulticentremolecularintegralsinthenewChapter18,(6)theadditionofChapter19, xix xx Preface which introduces the reader to the still actually growing field of relativistic molecular quantum mechanics,startingfromtheDirac’sequationfortherelativisticelectronuptoitsmajorapplicationsto atomicandmolecularsystems,and,lastly,(7)ashortoutlooktotheproblemofmolecularvibrations (Chapter 20) with particular emphasis to the vibronic interactions, a topic which was completely omitted in the former book. The original feature of the former book which completed each chapter with problems and solved problems was maintainedand enlargedinthe new book. ThecontentsofthenewbookaregivenintheintroductorysectionContents,whereallitemsineach chapter are specifiedindetail, sothat they will be omitted here. Awide list of alphabetically ordered references, mostly taken from original research papers, and authorand subjectindices complete the book. Thanks are due to my son Mario and his daughter Laura, who prepared the drawings at the computer, to Professor Giuseppe Figari, who helped much during the many years of research at the DepartmentofChemistryoftheUniversityofGenoa,toDrMicheleBattezzatiforusefulsuggestions and discussions on specific points, to Dr Tomas Marti(cid:1)sius of Vilnius (Lithuania), who provided the softwarefortranslatingfromLatextoWord,whichmadethisworkpossible,andtoDrCamillaCosta, who helped in the translation of the former published text from Latex to Word. Particularly warm thanks are due to the Elsevier’ Senior Acquisition Editor, Mr Adrian Shell, PhD, for his patience in discussing the best structure of the new book, and to Dr Egbert van Wezenbeek for his constant encouragementandsupport.Finally,IacknowledgetheItalianMinistryforEducationUniversityand Research (MIUR) and the University of Genoa for their financial support during the many years of scientific research ofthe Genoa group. MylastthanksareformywifePaola,whosupportedmestronglyduringthelongtimethiswork was inprogress. Valerio Magnasco Genoa,30th November2012 CHAPTER 1 Mathematical foundations and approximation methods CHAPTER OUTLINE 1.1 MathematicalFoundations.................................................................................................................4 1.1.1 Regularfunctions..........................................................................................................4 1.1.2 Schmidtorthogonalization..............................................................................................5 1.1.3 Lo¨wdinorthogonalization................................................................................................8 1.1.4 Setoforthonormalfunctionsandbasisset......................................................................8 1.1.5 Linearoperators............................................................................................................9 1.1.6 Hermitianoperators.....................................................................................................10 1.1.7 Expansiontheorem......................................................................................................14 1.1.8 Basicprinciplesofquantummechanics........................................................................17 1.2 TheVariationalMethod...................................................................................................................19 1.2.1 Non-linearparameters.................................................................................................21 1.2.2 Linearparameters:theRitzmethod..............................................................................21 1.3 PerturbativeMethodsforStationaryStates......................................................................................25 1.3.1 RSperturbationtheory.................................................................................................25 1.3.2 Second-orderapproximationmethodsinRSperturbationtheory......................................32 1.3.2.1 TheUnso¨ldapproximation......................................................................................32 1.3.2.2 TheHylleraasmethod.............................................................................................33 1.3.2.3 TheKirkwoodmethod.............................................................................................34 1.3.2.4 TheRitzmethodforE~ :linearpseudostates............................................................35 2 1.3.3 BWperturbationtheory................................................................................................37 1.3.4 PerturbationmethodswithoutpartitioningoftheHamiltonian.........................................40 1.3.4.1 LSperturbationtheory............................................................................................41 1.3.4.2 ENperturbationtheory...........................................................................................42 1.3.5 Perturbationtheoriesincludingexchange(SAPTs)..........................................................45 1.3.6 Themomentmethod....................................................................................................53 1.4 The Wentzel–Kramers–BrillouinMethod..........................................................................................55 1.5 Problems1....................................................................................................................................59 1.6 SolvedProblems............................................................................................................................62 In this chapter, after a short review of the mathematical and physical foundations of quantum mechanics, we shall be mostly concerned with the approximation methods on which all quantum chemistryapplicationsarebased.ThevariationalmethodduetoRayleighwillbeexaminedfirst,next 3 ElementaryMolecularQuantumMechanics2E.http://dx.doi.org/10.1016/B978-0-444-62647-9.00001-4 (cid:1)2013,2007ElsevierB.V.Allrightsreserved 4 CHAPTER 1 Mathematical foundations and approximation methods different perturbative methods for stationary states, starting from the Rayleigh–Schroedinger (RS) perturbation theory, including some efficient methods of treating second-order quantities, up to the Brillouin–Wigner(BW)andEpstein–Nesbet(EN)theories,thesymmetry-adaptedtheoriesincluding exchange (SAPT), and the recently developed moment method. A glance at the Wentzel–Kramers– Brillouin (WKB)method concludes this introductorychapter. 1.1 MATHEMATICAL FOUNDATIONS We begin by giving a few mathematical definitions. We denote by x either a single independent variable or a collective for many variables. Vectors and arguments of functions of more than one variable will be written in bold type: thus, we use r to denote a three-dimensional vector, say r¼ixþjyþkz in Cartesian coordinates, or the three variables (x,y,z) of a function f(x,y,z)¼f(r). Generalized coordinates and transformation from Cartesian to other coordinate systems will be examinedinChapter 2. 1.1.1 Regular functions In what follows, we shall be concerned only with regular functions of the general variable x. A function j(x), defined in a given domain D, is said regular if it satisfies the three constraints of being there: (1) single valued, (2) piecewise continuous with its first derivatives, and (3) quadratically integrable, i.e. it must be zero at infinity. So, not all functions that can exist mathematically are physically acceptable. Such functions are usually obtained, at least in prin- ciple, as solutions of differential equations of the second order like those examined in Chapter 3. According to Dirac, such functions can be treated as vectors having infinite components in an abstract linear space. Function j(x) can be complex, its complex conjugate being denoted by j*(x). Complex numbers and functions of a complex variable will be treated to some extent in Chapter 5. Weoften use the Dirac1notation: (cid:1) Function jðxÞ¼jji 0 ket (1) Complex conjugate j(cid:2)ðxÞ¼hjj 0 bra TheDirac jji vectorshaveall thewell-knownproperties of alinear vector space. Thescalar(orinner)product(analogybetweenregularfunctionsandcomplexvectorsofinfinite dimensions)of j*byj can then bewritten inthe bra-ket (‘bracket’) form: Z dxj(cid:2)ðxÞjðxÞ¼hjjji¼finite number>0 (2) 1DiracPaulAdrienMaurice1902–1984,Englishphysicist,ProfessorofmathematicsattheUniversityofCambridge(UK); 1933NobelPrizeforPhysics. 1.1 Mathematical foundations 5 If: hjjji¼Nj (3) wesaythatfunctionj(x)(theketjji)isnormalizedtoNj(thenormofj).Thefunctionjcanthenbe normalized to1 by multiplyingit bythe normalization factor N ¼ðNjÞ(cid:3)1=2. Thescalar productof two regularfunctions jand 4 satisfiesthe Schwarzinequality: hjj4i2 (cid:4)hjjjih4j4i (4) wherethe equality sign holds if andonly ifj and 4 are proportional. If: Z hjj4i¼ dxj(cid:2)ðxÞ4ðxÞ¼0 (5) we say that 4is orthogonalðtÞ toj. If: hj0j40i¼Sðs0Þ (6) 40andj0arenotorthogonal,butcanbeorthogonalizedineitheroftwoways.Theprimednotationwill bemostlyusedfornon-orthogonalfunctionsandtheunprimednotationfortheorthogonalset.Toput inevidencethatwehavetwofunctions,itisconvenienttodenotej0byc0 and40byc0;jbyc and4 1 2 1 by c . 2 1.1.2 Schmidt orthogonalization Thefirstorthogonalizationmethodistheso-calledunsymmetricalorthogonalizationorGram–Schmidt orthogonalization,inshortSchmidtorthogonalization.Itconsistsinchoosingthelinearcombination: (cid:3) (cid:4) c ¼c0; c ¼N c0 (cid:3)Sc0 ; hc jc i¼0 (7) 1 1 2 2 1 1 2 where N ¼ð1(cid:3)S2Þ(cid:3)1=2 is the normalization factor. In fact, it is easily seen that if c0 and c0 are 1 2 normalized to1: (cid:5) (cid:6) (cid:7) (cid:3) (cid:4) hc jc i¼N c0(cid:6)c0 (cid:3)Sc0 ¼N S(cid:3)S ¼0 (8) 1 2 1 2 1 Thegeneral Schmidtorthogonalization processfor two functionsisconstructed as follows. If: (cid:5) (cid:6) (cid:7) (cid:5) (cid:6) (cid:7) (cid:5) (cid:6) (cid:7) (cid:5) (cid:6) (cid:7) c0(cid:6)c0 ¼ c0(cid:6)c0 ¼1; c0(cid:6)c0 ¼ c0(cid:6)c0 ¼Sðs0Þ (9) 1 1 2 2 1 2 2 1 we take the newunprimed set: ( c ¼c0 1 1 (10) c ¼Ac0 þBc0 2 2 1 whereweimposeonc theconditionsoforthogonalityandnormalization(inshort,theorthonormality 2 conditions). Then: 8 (cid:5) (cid:6) (cid:7) <hc jc i¼ Ac0 þBc0(cid:6)c0 ¼ASþB¼0 2 1 (cid:5) 2 1(cid:6) 1 (cid:7) (11) :hc jc i¼ Ac0 þBc0(cid:6)Ac0 þBc0 ¼A2þB2þ2ABS¼1 2 2 2 1 2 1 6 CHAPTER 1 Mathematical foundations and approximation methods Weobtainthe system: (cid:1) ASþB¼0 (12) A2þB2þ2ABS¼1 which issolvedinterms ofthe ratio (B/A): 8 >>><B¼(cid:3)S As0 A (cid:8) (cid:9) (cid:10) (cid:9) (cid:10)(cid:11) (13) >>>:A2 1þ B 2þ2S B ¼A2(cid:3)1(cid:3)S2(cid:4)¼1 A A sothat: (cid:3) (cid:4) (cid:3) (cid:4) A¼ 1(cid:3)S2 (cid:3)1=2; B¼(cid:3)S 1(cid:3)S2 (cid:3)1=2 (14) andthe Schmidt orthogonalized two-set will be: 8 ><c1 ¼c01 >:c ¼cp02ffiffi(cid:3)ffiffiffiffiffiSffifficffiffiffi01ffi (15) 2 1(cid:3)S2 UsingthematrixformofChapter6,wecanwriteSchmidtorthogonalizationasthetransformation between the two sets offunctions describedby (1 (cid:5)2)row vectors: (cid:3) (cid:4) ! (cid:3) (cid:4) 1 (cid:3)S 1(cid:3)S2 (cid:3)1=2 (cid:3) (cid:4) ðc c Þ¼ c0 c0 (cid:3) (cid:4) ¼ c0 c0 O (16) 1 2 1 2 0 1(cid:3)S2 (cid:3)1=2 1 2 S where: (cid:3) (cid:4) ! 1 (cid:3)S 1(cid:3)S2 (cid:3)1=2 O ¼ (cid:3) (cid:4) (17) S 0 1(cid:3)S2 (cid:3)1=2 isthe unsymmetrical (2(cid:5)2) matrix doing Schmidt’s orthonormalization. For a set of three normalized but non-orthogonal functions ðc0 c0 c0 Þ having non-orthogo- 1 2 3 nalitiesS ,S ,S ,respectively,itisbettertoorthogonalizeinafirststepthesecondfunctiontothe 12 13 23 first one, next the third function to the resulting orthogonalized ones. In terms of the original set, Schmidt’sorthogonalization isgiveninthis case by the (3(cid:5) 3)transformation: (cid:3) (cid:4) ðc c c Þ¼ c0 c0 c0 O (18) 1 2 3 1 2 3 S where: 0 1 1 (cid:3)N S (cid:3)N ðS (cid:3)S S Þ 2 21 3 31 32 21 B C B C OS ¼B@0 N2 (cid:3)N3ðS32(cid:3)S31S21ÞCA (cid:3) (cid:4) 0 0 N 1(cid:3)S2 3 21 (cid:5) (cid:6) (cid:7) Skl ¼ c0k(cid:6)c0l k;l¼1;2;3 (cid:3) (cid:4) (cid:13)(cid:3) (cid:4)(cid:3) (cid:4)(cid:14) N ¼ 1(cid:3)S2 (cid:3)1=2; N ¼ 1(cid:3)S2 1(cid:3)S2 (cid:3)S2 (cid:3)S2 þ2S S S (cid:3)1=2 (19) 2 21 3 21 32 31 21 32 31 21

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.